, Volume 26, Issue 3, pp 1489–1501 | Cite as

Electronic and optical properties of chromophores from hexeneuronic acids

  • Amit KumarEmail author
  • Giancarlo Cappellini
  • Francesco Delogu
Original Research


We report a systematic computational investigation on the electronic and optical properties of chromophores derived from hexeneuronic acids (HexA). In particular, we focus on five chemical structures, which account up to 90% of HexaA-derived chromophores. We performed all-electrons density functional theory (DFT) and time dependent DFT (TDDFT) calculations with a localized Gaussian basis set and the hybrid exchange correlation functional B3LYP. We quantified key molecular properties relevant as electron affinities, ionization energies, fundamental gaps, optical absorption spectra, and exciton binding energies. Furthermore, we modeled the HexA chromophores in the presence of peroxide (H2O2) solvent and evaluated the changes in the optical properties due to the solvent. Altogether, our results provide a complete description of molecular, electronic and optical properties of HexA derived chromophores, which can be useful to understand their role in bleaching mechanisms and also their potential application as organic conductors.

Graphical abstract


Hexeneuronic acids Chromophores Electronic properties Optical properties Density functional theory Organic conductors 



This work has been supported by University of Cagliari (Italy). The authors acknowledge the use of computational resources of CRS4 with special thanks to the high performance computing staffs: Marco Moro, Carlo Podda and Michele Muggiri. GC acknowledges partial financial support from IDEA-AISBL Bruxelles and from Progetto biennale d’Ateneo UniCa/FdS/RAS (Legge Regionale 07/08/2007Annualita` 2016) ‘‘Multiphysics theoretical approach to Thermoelectricity”. The authors thank Dr. Roberto Cardia at university of Cagliari for useful discussions.

Supplementary material

10570_2018_2174_MOESM1_ESM.pdf (11.2 mb)
Supplementary material 1 (PDF 11492 kb)


  1. Ali J, Camilleri P, Brown MB, Hutt AJ, Kirton SB (2012) Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J Chem Inf Model 52:420–428. CrossRefGoogle Scholar
  2. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. CrossRefGoogle Scholar
  3. Brint P, Connerade J-P, Tsekeris P, Bolovinos A, Baig A (1986) Vacuum ultraviolet absorption spectrum of p-benzoquinone. J Chem Soc, Faraday Trans 2:82. Google Scholar
  4. Cadena EM, Vidal T, Torres AL (2010) Influence of the hexenuronic acid content on refining and ageing in eucalyptus TCF pulp. Bioresour Technol 101:3554–3560. CrossRefGoogle Scholar
  5. Cardia R, Malloci G, Mattoni A, Cappellini G (2014) Effects of TIPS-functionalization and perhalogenation on the electronic, optical, and transport properties of angular and compact dibenzochrysene. J Phys Chem A 118:5170–5177. CrossRefGoogle Scholar
  6. Cardia R, Malloci G, Rignanese GM, Blase X, Molteni E, Cappellini G (2016) Electronic and optical properties of hexathiapentacene in the gas and crystal phases. Phys Rev B. Google Scholar
  7. Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. CrossRefGoogle Scholar
  8. ChemAxon. Accessed 24 July 2018
  9. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. CrossRefGoogle Scholar
  10. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717. CrossRefGoogle Scholar
  11. Granstrom A, Eriksson T, Gellerstedt G, Roost C, Larsson P (2001) Variables affecting the thermal yellowing of TCF-bleached birch kraft pulps. Nordic Pulp Paper Res J 16:18–23CrossRefGoogle Scholar
  12. Holtzapple MT (2003) Hemicelluloses. In: Encyclopedia of Food Sciences and Nutrition. 3060–3071, Academic Press, New York,
  13. Huffman FG (2003) Uronic acids: 5890–5896
  14. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33-38, 27-38 doi:0263785596000185 [pii]Google Scholar
  15. Jensen F (2017) Introduction to computational chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  16. Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689–746. CrossRefGoogle Scholar
  17. Jones DB et al (2017) An experimental and theoretical investigation into the electronically excited states of para-benzoquinone. J Chem Phys. Google Scholar
  18. Kawae A, Uchida Y (2010) Relationship between hexenuronic acid and brightness reversion of ECF-bleached Hardwood Kraft Pulp part 1. Jpn Tappi J 64:170–179. CrossRefGoogle Scholar
  19. Knupfer M (2003) Exciton binding energies in organic semiconductors. Appl Phys A 77:623–626. CrossRefGoogle Scholar
  20. Kohn W (1999) Nobel lecture: electronic structure of matter—wave functions and density functionals. Rev Mod Phys 71:1253–1266. CrossRefGoogle Scholar
  21. Kumar A, Delogu F (2017) Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor. Sci Rep 7:42496. CrossRefGoogle Scholar
  22. Kumar A et al (2013) Identification of calcium binding sites on calsequestrin 1 and their implications for polymerization. Mol BioSyst 9:1949–1957. CrossRefGoogle Scholar
  23. Kumar A, Sechi LA, Caboni P, Marrosu MG, Atzori L, Pieroni E (2015) Dynamical insights into the differential characteristics of mycobacterium avium subsp. paratuberculosis peptide binding to HLA-DRB1 proteins associated with multiple sclerosis. New J Chem 39:1355–1366. CrossRefGoogle Scholar
  24. Kumar A, Cardia R, Cappellini G (2018) Electronic and optical properties of chromophores from bacterial cellulose. Cellulose 25:2191–2203. CrossRefGoogle Scholar
  25. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. CrossRefGoogle Scholar
  26. Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684. CrossRefGoogle Scholar
  27. Malloci G, Cappellini G, Mulas G, Satta G (2004) Quasiparticle effects and optical absorption in small fullerenelike GaP clusters. Phys Rev B. Google Scholar
  28. Malloci G, Cappellini G, Mulas G, Mattoni A (2011) Electronic and optical properties of families of polycyclic aromatic hydrocarbons: a systematic (time-dependent) density functional theory study. Chem Phys 384:19–27. CrossRefGoogle Scholar
  29. Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455. CrossRefGoogle Scholar
  30. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164. CrossRefGoogle Scholar
  31. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. CrossRefGoogle Scholar
  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. CrossRefGoogle Scholar
  33. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. CrossRefGoogle Scholar
  34. Pou-Amerigo R, Merchan M, Orti E (1999) Theoretical study of the electronic spectrum of p-benzoquinone. J Chem Phys 110:9536–9546. CrossRefGoogle Scholar
  35. Rosenau T et al (2014) Chromophores in cellulosics, XI: isolation and identification of residual chromophores from bacterial cellulose. Cellulose 21:2271–2283. CrossRefGoogle Scholar
  36. Rosenau T et al (2017) Chromophores from hexeneuronic acids: identification of HexA-derived chromophores. Cellulose 24:3671–3687. CrossRefGoogle Scholar
  37. Shatalov AA, Pereira H (2009) Impact of hexenuronic acids on xylanase-aided bio-bleaching of chemical pulps. Bioresour Technol 100:3069–3075. CrossRefGoogle Scholar
  38. Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452. CrossRefGoogle Scholar
  39. Sun R, Sun XF, Tomkinson J (2003) Hemicelluloses and their derivatives 864:2–22. Google Scholar
  40. Takahashi K, Kobayashi K (2000) Furan-fused TCNQ and DCNQI: synthesis and properties. J Org Chem 65:2577–2579CrossRefGoogle Scholar
  41. Valiev M et al (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489. CrossRefGoogle Scholar
  42. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. CrossRefGoogle Scholar
  43. Weber J, Malsch K, Hohlneicher G (2001) Excited electronic states of p-benzoquinone. Chem Phys 264:275–318. CrossRefGoogle Scholar
  44. Zwirchmayr NS et al (2017) Chromophores from hexeneuronic acids: chemical behavior under peroxide bleaching conditions. Cellulose 24:3689–3702. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical, Chemical and Materials EngineeringUniversity of CagliariCagliariItaly
  2. 2.Department of PhysicsUniversity of Cagliari, Cittadella UniversitariaMonserrato, CagliariItaly
  3. 3.CNR-IOMUniversity of Cagliari, Cittadella UniversitariaMonserrato, CagliariItaly

Personalised recommendations