Advertisement

Cellulose

pp 1–11 | Cite as

Biopolymeric films obtained from the parenchyma cells of Agave salmiana leaves

  • Julio Silva-Mendoza
  • María Elena Cantú-Cárdenas
  • Sofia Vazquez-Rodriguez
  • Alberto Toxqui-Terán
  • Leonardo Chávez-Guerrero
Original Research
  • 43 Downloads

Abstract

Here, we report a non-aggressive method to obtain nanocellulose (NC) from the parenchyma of Agave salmiana leaves. This is accomplished by using a low concentration of a “piranha solution” to achieve solubilization and remove non-cellulosic components, isolating the NC in a single hydrolysis step. X-ray diffraction analysis has shown an increase in the crystallinity index of cellulose from 35 to 60 a result of the hydrolysis, and analysis by Fourier-transform infrared spectroscopy and Raman spectroscopy demonstrated that the cellulose had been purified. To test the thermal, mechanical, and optical properties of the NC, it was used to produce a paper. Analysis by scanning electron microscopy showed that the paper was formed from cellulose nanoplatelets (CNPs) stacked on top of each other.

Graphical abstract

Keywords

Nanocellulose Agave leaves Piranha solution Nanofibrils 

Notes

Acknowledgments

To the UANL and CONACyT for the financial support for this work and for the scholarship awarded (No. CVU 514440). Contributions of the reviewers for the journal are gratefully acknowledged.

References

  1. Abitbol T, Rivkin A, Cao Y et al (2016) Nanocellulose, a tine fiber with huge applications. Curr Opin Biotechnol 39:76–88CrossRefPubMedGoogle Scholar
  2. Borland AM, Griffiths H, Hartwell J, Smith JA (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896CrossRefPubMedGoogle Scholar
  3. Boyle CD, Kropp BR, Reid ID (1992) Solubilization and mineralization of lignin by white rot fungi. Appl Environ Microbiol 58(10):3217–3224PubMedPubMedCentralGoogle Scholar
  4. Chávez-Guerrero L, Sepúlveda-Guzmán S (2015) Proceso de separación de materiales vegetales fibrosos en sus componentes de fibra y matriz. México, Patent Request No. MX/a/2015/001927. [c12e19/00(2006-01)]Google Scholar
  5. Chávez-Guerrero L, Garza-Cervantes J, Caballero-Hernández D et al (2017a) Synthesis and characterization of calcium hydroxide obtained from Agave bagasse and investigation of its antibacterial activity. Rev Int Contam Ambie 33(2):347–353CrossRefGoogle Scholar
  6. Chávez-Guerrero L, Sepúlveda-Guzmán S, Rodríguez-Liñan C et al (2017b) Isolation and characterization of cellulose nanoplatelets from the parenchyma cells of Agave salmiana. Cellulose 24:3741–3752CrossRefGoogle Scholar
  7. Corbin K, Byrt C, Bauer S et al (2015) Prospecting for energy-rich renewable raw materials: Agave leaf case study. PLoS ONE 10:e0135382CrossRefPubMedPubMedCentralGoogle Scholar
  8. De Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270CrossRefGoogle Scholar
  9. Delgado-Lemus A, Casas A, Téllez O (2014) Distribution, abundance and traditional management of Agave potatorumin the Tehuacán Valley, Mexico: bases for sustainable use of non-timber forest products. J Ethnobiol Ethnomed 10:63CrossRefPubMedPubMedCentralGoogle Scholar
  10. Enríquez-Salazar MI, Veana F, Aguilar CN et al (2017) Microbial diversity and biochemical profile of aguamiel collected from Agave salmiana and A. atrovirens during different seasons of year. Food Sci Biotechnol 26(4):1003–1011CrossRefGoogle Scholar
  11. Faradilla RHF, Lee G, Roberts J et al (2018) Effect of glycerol, nanoclay and graphene oxide on physicochemical properties of biodegradable nanocellulose plastic sourced from banana pseudo-stem. Cellulose 25(1):399–416CrossRefGoogle Scholar
  12. French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  13. Gao J, Xue JF, Xu M et al (2014) Nanouric acid or nanocalcium phosphate as central nidus to induce calcium oxalate stone formation: a high-resolution transmission electron microscopy study on urinary nanocrystallites. Int J Nanomed 9:4399–4409Google Scholar
  14. George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gierlinger N, Keplinger T, Harrington M (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc 7:1694–1708CrossRefPubMedGoogle Scholar
  17. Hug S, Grohe B, Jalkanen J et al (2012) Mechanism of inhibition of calcium oxalate crystal growth by an osteopontin phosphopeptide. Soft Matter 8:1226–1236CrossRefGoogle Scholar
  18. Khan A, Abas Z, Kim HS, Kim J (2016) Recent progress on cellulose-based electro-active paper, its hybrid nanocomposites and applications. Sensors 16:1172–1201CrossRefGoogle Scholar
  19. Lammaming J, Hashim R, Leh CP et al (2015) Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohydr Polym 134:534–540CrossRefGoogle Scholar
  20. Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulose biomass to nanocellulose: structure and chemical process. Sci World J 2014:20Google Scholar
  21. Li S, Lee PS (2017) Development and applications of transparent conductive nanocellulose paper. Sci Technol Adv Mater 18(1):620–633CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li H, Pattathil S, Foston MB et al (2014) Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. Biotechnol Biofuels 7:50–60CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28:475–508CrossRefGoogle Scholar
  24. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its Characterization. Carbohydr Polym 86:1291–1299CrossRefGoogle Scholar
  25. Park S, Baker J, Himmel M et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefPubMedPubMedCentralGoogle Scholar
  26. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206CrossRefGoogle Scholar
  27. Perez-Pimienta JA, Lopez-Ortega MG, Chavez-Carvayar JA et al (2015) Characterization of agave bagasse as a function of ionic liquid pretreatment. Biomass Bioenergy 75:180–188CrossRefGoogle Scholar
  28. Phanthong P, Karnjanakom S, Reubroycharoen P et al (2017) A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose 24(5):2083–2093CrossRefGoogle Scholar
  29. Rajala S, Siponkoski T, Sarlin E et al (2016) Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 8:15607–15614CrossRefPubMedGoogle Scholar
  30. Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8(2):1893–1908CrossRefGoogle Scholar
  31. Salas C, Nypelö Rodriguez-Abreu C et al (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396CrossRefGoogle Scholar
  32. Satyamurthy P, Vigneshwaran N (2013) A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzyme Microb Technol 52:20–25CrossRefPubMedGoogle Scholar
  33. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  34. Soni B, Hassan EB, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589CrossRefPubMedGoogle Scholar
  35. Sun X, Wu Q, Zhang X et al (2018) Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. Cellulose 25(2):1103–1115CrossRefGoogle Scholar
  36. Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors 11:5543–5560CrossRefPubMedGoogle Scholar
  37. Vikman M, Vartiainen J, Tsitko I, Korhonen P (2015) Biodegradability and compostability of nanofibrillar cellulose-based products. J Polym Environ 23:206–215CrossRefGoogle Scholar
  38. Vollick B, Kuo PY, Thérien-Aubin H et al (2017) Composite cholesteric nanocellulose films with enhanced mechanical properties. Chem Mater 29(2):789–795CrossRefGoogle Scholar
  39. Xiong R, Zhang X, Tian D et al (2012) Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19(4):1189–1198CrossRefGoogle Scholar
  40. Zhao M, Ansari F, Takeuchi M et al (2018) Nematic structuring of transparent and multifunctional nanocellulose papers. Nanoscale Horiz 3(1):28–34CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  3. 3.Advanced Materials Research Center (CIMAV)ApodacaMexico

Personalised recommendations