Advertisement

Cellulose

pp 1–15 | Cite as

Influence of cellulose chemical pretreatment on energy consumption and viscosity of produced cellulose nanofibers (CNF) and mechanical properties of nanopaper

  • L. C. Malucelli
  • M. Matos
  • C. Jordão
  • D. Lomonaco
  • L. G. Lacerda
  • M. A. S. Carvalho Filho
  • W. L. E. Magalhães
Original Research
  • 34 Downloads

Abstract

Lignocellulosic fibers are the main sources for producing nanocellulose, in which mechanical methods are the most appropriate to achieve a high yield and generate low residue. High energy consumption is the major drawback in these processes, although they are the cheapest way to produce nanocellulose. Chemical pretreatment is one approach to further decrease the overall cost during defibrillation; however, the influence over sample viscosity and mechanical properties is yet to be investigated. Here, we study the influence of chemical pretreatments using NaOH and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) on the mechanical, rheological and structural properties of cellulose nanofibers made from bleached eucalyptus pulp. Modification of samples was evidenced by their respective peaks on FTIR spectra. Sample crystallinity increased after partial hemicellulose and amorphous cellulose removal. In addition, a strong correlation between grinding efficiency and lower energy consumption was observed. However, a mild alkaline treatment may improve fiber strength at the expense of suspension stability and energy consumption. Modified nanofibers presented good potential for enhancing mechanical properties and/or improving suspension stability.

Keywords

Disintegration Hemicellulose Pretreatments Processing energy TEMPO-oxidation 

Notes

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council of Technological and Scientific Development) and Embrapa Florestas for financially supporting this work. We also thank CME – UFPR (TEM analysis), Physics Department – UFPR (XRD analysis), Dr. Ivo Demiate for granting access to the viscometer analysis at Universidade Estadual de Ponta Grossa (UEPG) and Mrs. Bia Carneiro for providing the English revision of the accepted manuscript.

References

  1. Agarwal UP, Ralph SA, Baez C, Reiner RS, Verrill SP (2017) Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24(5):1971–1984.  https://doi.org/10.1007/s10570-017-1259-0 CrossRefGoogle Scholar
  2. Agarwal UP, Ralph SA, Reiner RS, Baez C (2018) New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydr Polym 190(February):262–270.  https://doi.org/10.1016/j.carbpol.2018.03.003 CrossRefPubMedGoogle Scholar
  3. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671.  https://doi.org/10.1016/j.biortech.2007.04.029 CrossRefPubMedGoogle Scholar
  4. Azubuike CP, Rodríguez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19(2):425–433.  https://doi.org/10.1007/s10570-011-9631-y CrossRefGoogle Scholar
  5. Beaumont M, König J, Opietnik M, Potthast A, Rosenau T (2017) Drying of a cellulose II gel: effect of physical modification and redispersibility in water. Cellulose 24(3):1199–1209.  https://doi.org/10.1007/s10570-016-1166-9 CrossRefGoogle Scholar
  6. Beheshti Tabar I, Zhang X, Youngblood JP, Mosier NS (2017) Production of cellulose nanofibers using phenolic enhanced surface oxidation. Carbohydr Polym 174:120–127.  https://doi.org/10.1016/j.carbpol.2017.06.058 CrossRefPubMedGoogle Scholar
  7. Belouadah Z, Ati A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr Polym 134:429–437.  https://doi.org/10.1016/j.carbpol.2015.08.024 CrossRefPubMedGoogle Scholar
  8. Berglund L, Noël M, Aitomäki Y, Öman T, Oksman K (2016) Production potential of cellulose nanofibers from industrial residues: efficiency and nanofiber characteristics. Ind Crops Prod 92:84–92.  https://doi.org/10.1016/j.indcrop.2016.08.003 CrossRefGoogle Scholar
  9. Berglund L, Anugwom I, Hedenström M, Aitomäki Y, Mikkola JP, Oksman K (2017) Switchable ionic liquids enable efficient nanofibrillation of wood pulp. Cellulose 24(8):3265–3279.  https://doi.org/10.1007/s10570-017-1354-2 CrossRefGoogle Scholar
  10. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84(3):975–983.  https://doi.org/10.1016/j.carbpol.2010.12.052 CrossRefGoogle Scholar
  11. Cao X, Ding B, Yu J, Al-Deyab SS (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90(2):1075–1080.  https://doi.org/10.1016/j.carbpol.2012.06.046 CrossRefGoogle Scholar
  12. Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20(6):2863–2875.  https://doi.org/10.1007/s10570-013-0036-y CrossRefGoogle Scholar
  13. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442.  https://doi.org/10.1007/s10570-011-9497-z CrossRefGoogle Scholar
  14. Chen W, Li Q, Cao J, Liu Y, Li J, Zhang J, Luo S, Yu H (2015) Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation. Carbohydr Polym 117:950–956.  https://doi.org/10.1016/j.carbpol.2014.10.024 CrossRefPubMedGoogle Scholar
  15. Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843.  https://doi.org/10.1039/C6GC00687F CrossRefGoogle Scholar
  16. Corrêa AC, de Teixeira EM, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17(6):1183–1192.  https://doi.org/10.1007/s10570-010-9453-3 CrossRefGoogle Scholar
  17. Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9(1):7–18.  https://doi.org/10.1023/A:1015877021688 CrossRefGoogle Scholar
  18. Ditzel FI, Prestes E, Carvalho BM, Demiate IM, Pinheiro LA (2017) Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydr Polym 157:1577–1585.  https://doi.org/10.1016/j.carbpol.2016.11.036 CrossRefPubMedGoogle Scholar
  19. Du C, Li H, Li B, Liu M, Zhan H (2016) Characteristics and properties of cellulose nanofibers prepared by TEMPO oxidation of corn husk. BioResources 11(2):5276–5284.  https://doi.org/10.15376/biores.11.2.5276-5284 CrossRefGoogle Scholar
  20. Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15(6):4111–4128.  https://doi.org/10.3390/molecules15064111 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Espinosa E, Domínguez-Robles J, Sánchez R, Tarrés Q, Rodríguez A (2017) The effect of pre-treatment on the production of lignocellulosic nanofibers and their application as a reinforcing agent in paper. Cellulose 24(6):2605–2618.  https://doi.org/10.1007/s10570-017-1281-2 CrossRefGoogle Scholar
  22. Fillat Ú, Wicklein B, Martín-Sampedro R, Ibarra D, Ruiz-Hitzky E, Valencia C, Sarrión A, Castro E, Eugenio ME (2018) Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydr Polym 179:252–261.  https://doi.org/10.1016/j.carbpol.2017.09.072 CrossRefPubMedGoogle Scholar
  23. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588.  https://doi.org/10.1007/s10570-012-9833-y CrossRefGoogle Scholar
  24. Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508.  https://doi.org/10.1016/j.polymdegradstab.2010.06.015 CrossRefGoogle Scholar
  25. García A, Gandini A, Labidi J, Belgacem N, Bras J (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crops Prod 93:26–38.  https://doi.org/10.1016/j.indcrop.2016.06.004 CrossRefGoogle Scholar
  26. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500.  https://doi.org/10.1021/cr900339w CrossRefPubMedGoogle Scholar
  27. Hunter RJ (2013) Zeta potential in colloid science: principles and applications, vol 2. Academic pressGoogle Scholar
  28. Ilyas RA, Sapuan SM, Ishak MR (2017) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym 181:1038–1051.  https://doi.org/10.1016/j.carbpol.2017.11.045 CrossRefPubMedGoogle Scholar
  29. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRefPubMedGoogle Scholar
  30. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromol 9(3):1022–1026.  https://doi.org/10.1021/bm701157n CrossRefGoogle Scholar
  31. Jia Y, Zhai X, Fu W, Liu Y, Li F, Zhong C (2016) Surfactant-free emulsions stabilized by tempo-oxidized bacterial cellulose. Carbohydr Polym 151:907–915.  https://doi.org/10.1016/j.carbpol.2016.05.099 CrossRefPubMedGoogle Scholar
  32. Jiang F, Hsieh YL (2014) Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. ACS Appl Mater Interfaces 6(22):20075–20084CrossRefPubMedGoogle Scholar
  33. Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335.  https://doi.org/10.1016/j.carbpol.2016.01.048 CrossRefPubMedGoogle Scholar
  34. Kawee N, Lam NT, Sukyai P (2018) Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization. Carbohydr Polym 179:394–401.  https://doi.org/10.1016/j.carbpol.2017.09.101 CrossRefPubMedGoogle Scholar
  35. Lê HQ, Dimic-Misic K, Johansson LS, Maloney T, Sixta H (2018) Effect of lignin on the morphology and rheological properties of nanofibrillated cellulose produced from γ-valerolactone/water fractionation process. Cellulose 25(1):179–194.  https://doi.org/10.1007/s10570-017-1602-5 CrossRefGoogle Scholar
  36. Lee H, Sundaram J, Zhu L, Zhao Y, Mani S (2018) Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohydr Polym 181:506–513.  https://doi.org/10.1016/j.carbpol.2017.08.119 CrossRefPubMedGoogle Scholar
  37. Lengowski EC, de Muniz GIB, Nisgoski S, Magalhães WLE (2013) Avaliação de métodos de obtenção de celulose com diferentes graus de cristalinidade. Sci For 41(98):185–194Google Scholar
  38. Lichtenstein K, Lavoine N (2017) Toward a deeper understanding of the thermal degradation mechanism of nanocellulose. Polym Degrad Stab 146:53–60.  https://doi.org/10.1016/j.polymdegradstab.2017.09.018 CrossRefGoogle Scholar
  39. Lindström T (2017) Aspects on nanofibrillated cellulose (NFC) processing, rheology and NFC-film properties. Curr Opin Colloid Interface Sci 29:68–75.  https://doi.org/10.1016/j.cocis.2017.02.005 CrossRefGoogle Scholar
  40. Liu C, Li B, Du H, Lv D, Zhang Y, Yu G, Um X, Peng H (2016a) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724.  https://doi.org/10.1016/j.carbpol.2016.06.025 CrossRefPubMedGoogle Scholar
  41. Liu P, Oksman K, Mathew AP (2016b) Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci 464:175–182.  https://doi.org/10.1016/j.jcis.2015.11.033 CrossRefPubMedGoogle Scholar
  42. Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos B Eng 51:28–34.  https://doi.org/10.1016/j.compositesb.2013.02.031 CrossRefGoogle Scholar
  43. Malucelli LC, Matos M, Jordão C, Lacerda LG, Carvalho Filho MAS, Magalhães WLE (2018) Grinding severity influences the viscosity of cellulose nanofiber (CNF) suspensions and mechanical properties of nanopaper. Cellulose.  https://doi.org/10.1007/s10570-018-2031-9 CrossRefGoogle Scholar
  44. Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M, Maloney T, Paltakari J, Alava MJ (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21(3):1305–1312.  https://doi.org/10.1007/s10570-014-0235-1 CrossRefGoogle Scholar
  45. Morais JPS, Rosa MDF, De Souza Filho MDSM, Nascimento LD, Do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235.  https://doi.org/10.1016/j.carbpol.2012.08.010 CrossRefPubMedGoogle Scholar
  46. Musiał M, Grosel J (2016) Determining the Young’s modulus of concrete by measuring the eigenfrequencies of concrete and reinforced concrete beams. Constr Build Mater 121:44–52.  https://doi.org/10.1016/j.conbuildmat.2016.05.150 CrossRefGoogle Scholar
  47. Park O-K, Choi H, Jeong H, Jung Y, Yu J, Lee JK, Hwang JY, Kim SM, Jeong Y, Park CR, Endo M, Ku B-C (2017) High-modulus and strength carbon nanotube fibers using molecular cross-linking. Carbon 118:413–421.  https://doi.org/10.1016/j.carbon.2017.03.079 CrossRefGoogle Scholar
  48. Pichelli KR (2016) Eucalyptus tillage for energy (“plantio de eucalipto para energia”). In: multimidia: image data bank. Embrapa, Brasilia. Available at: https://www.embrapa.br/en/busca-de-imagens/-/midia/3014003/plantio-de-eucalipto-para-energia. Acessed 28 Sept 2018
  49. Putro JN, Kurniawan A, Ismadji S, Ju YH (2017) Nanocellulose based biosorbents for wastewater treatment: study of isotherm, kinetic, thermodynamic and reusability. Environ Nanotechnol Monit Manag 8(43):134–149.  https://doi.org/10.1016/j.enmm.2017.07.002 CrossRefGoogle Scholar
  50. Rambabu N, Panthapulakkal S, Sain M, Dalai AK (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crops Prod 83:746–754.  https://doi.org/10.1016/j.indcrop.2015.11.083 CrossRefGoogle Scholar
  51. Rattaz A, Mishra SP, Chabot B, Daneault C (2011) Cellulose nanofibres by sonocatalysed-TEMPO-oxidation. Cellulose 18(3):585–593.  https://doi.org/10.1007/s10570-011-9529-8 CrossRefGoogle Scholar
  52. Rodionova G, Eriksen Ø, Gregersen Ø (2012) TEMPO-oxidized cellulose nanofiber films: effect of surface morphology on water resistance. Cellulose 19(4):1115–1123.  https://doi.org/10.1007/s10570-012-9721-5 CrossRefGoogle Scholar
  53. Rodionova G, Saito T, Lenes M, Eriksen Ø, Gregersen Ø, Kuramae R, Isogai A (2013) TEMPO-mediated oxidation of Norway spruce and eucalyptus pulps: preparation and characterization of nanofibers and nanofiber dispersions. J Polym Environ 21(1):207–214.  https://doi.org/10.1007/s10924-012-0483-9 CrossRefGoogle Scholar
  54. Rohaizu R, Wanrosli WD (2017) Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrason Sonochem 34:631–639.  https://doi.org/10.1016/j.ultsonch.2016.06.040 CrossRefPubMedGoogle Scholar
  55. Roy A, Chakraborty S, Kundu SP, Basak RK, Basu Majumder S, Adhikari B (2012) Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresour Technol 107:222–228.  https://doi.org/10.1016/j.biortech.2011.11.073 CrossRefPubMedGoogle Scholar
  56. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491.  https://doi.org/10.1021/bm0703970 CrossRefGoogle Scholar
  57. Santucci BS, Bras J, Belgacem MN, da Silva Curvelo AA, Pimenta MTB (2016) Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse. Ind Crops Prod 91:238–248.  https://doi.org/10.1016/j.indcrop.2016.07.017 CrossRefGoogle Scholar
  58. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  59. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromol 13(3):842–849.  https://doi.org/10.1021/bm2017542 CrossRefGoogle Scholar
  60. Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436.  https://doi.org/10.1016/j.indcrop.2012.10.014 CrossRefGoogle Scholar
  61. Soni B, Hassan EB, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589.  https://doi.org/10.1016/j.carbpol.2015.08.031 CrossRefPubMedGoogle Scholar
  62. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111.  https://doi.org/10.1007/s10570-011-9533-z CrossRefGoogle Scholar
  63. Sun X, Wu Q, Lee S, Qing Y, Wu Y (2016) Cellulose nanofibers as a modifier for rheology, curing and mechanical performance of oil well cement. Sci Rep 6:1–9.  https://doi.org/10.1038/srep31654 CrossRefGoogle Scholar
  64. Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84(3):1033–1038.  https://doi.org/10.1016/j.carbpol.2010.12.066 CrossRefGoogle Scholar
  65. Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589.  https://doi.org/10.1007/s10570-014-0196-4 CrossRefGoogle Scholar
  66. Tejado A, Alam MN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3):831–842.  https://doi.org/10.1007/s10570-012-9694-4 CrossRefGoogle Scholar
  67. Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88CrossRefPubMedGoogle Scholar
  68. Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643.  https://doi.org/10.1007/s10570-012-9745-x CrossRefGoogle Scholar
  69. Wang H, Li D, Yano H, Abe K (2014) Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose 21(3):1505–1515.  https://doi.org/10.1007/s10570-014-0222-6 CrossRefGoogle Scholar
  70. Wu CN, Cheng KC (2017) Strong, thermal-stable, flexible, and transparent films by self-assembled TEMPO-oxidized bacterial cellulose nanofibers. Cellulose 24(1):269–283.  https://doi.org/10.1007/s10570-016-1114-8 CrossRefGoogle Scholar
  71. Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19(4):1173–1187.  https://doi.org/10.1007/s10570-012-9714-4 CrossRefGoogle Scholar
  72. Zhang L, Tsuzuki T, Wang X (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22(3):1729–1741.  https://doi.org/10.1007/s10570-015-0582-6 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Graduate Program in Environmental ManagementUniversidade Positivo (UP)CuritibaBrazil
  2. 2.Graduate Program in Materials and Science Engineering (PIPE)Universidade Federal do Paraná (UFPR)CuritibaBrazil
  3. 3.Graduate Program in Chemical EngineeringUniversidade Federal do Paraná (UFPR)CuritibaBrazil
  4. 4.Department of Organic and Inorganic ChemistryUniversidade Federal do Ceará (UFCE)FortalezaBrazil
  5. 5.Graduate Program in Food EngineeringUniversidade Estadual de Ponta Grossa (UEPG)Ponta GrossaBrazil
  6. 6.Embrapa ForestryColomboBrazil

Personalised recommendations