Advertisement

Cellulose

pp 1–12 | Cite as

Preparation of nanocellulose/filter paper (NC/FP) composite membranes for high-performance filtration

  • Zhiguo Wang
  • Wenwen Zhang
  • Juan Yu
  • Lijun Zhang
  • Liang Liu
  • Xiaofan Zhou
  • Chaobo Huang
  • Yimin Fan
Original Paper
  • 8 Downloads

Abstract

A layer deposition method was developed to prepare a series of nanocellulose/filter paper (NC/FP) composite filtration membranes by vacuum filtration of an aqueous nanocellulose dispersion on a filter paper substrate. The deposited NC networks and the final pore structure of the NC/FP composite were affected by the size and the amount of the nanocellulose. Drying methods further influenced the filtration performance of the membranes. With a greater NC aspect ratio and an increasing amount of added NC, NC/FP composite membranes exhibited better rejection rates with lower water flux. Two types of NC were chosen with different sizes as follows: (1) cellulose nanocrystals prepared from microcrystalline cellulose, which are characterized by their small size, and (2) cellulose nanofibers (CNFs) prepared from hardwood bleached Kraft pulp, which are characterized by their large size. Varying filtration performance was also achieved by altering the drying conditions (temperature, pressure and solvents) during the manufacturing process of NC/FP composite filtration membranes. In particular, NC/FP composite membranes obtained by vacuum drying at 60 °C with 0.1% CNFs demonstrated excellent ultrafiltration properties with retention rates as high as 97.14% and an acceptable flux (46,279 L m−2 h−1). Furthermore, NC/FP composite membranes demonstrated good tolerance to acidic and alkaline conditions, but their performance was weakened when treated with high or low temperatures. NC/FP composite membranes have promising potential for use as advanced separation membranes for water purification.

Graphical abstract

Keywords

Nanocellulose Cellulose nanofibers Filter paper Composite membrane Ultrafiltration 

Notes

Acknowledgments

We are grateful for financial support from the National Natural Science Foundation of China (Grant No. 31870565) as well as project funding from the Natural Science Foundation of Jiangsu Province (BK20181397 and BK20170924).

Supplementary material

10570_2018_2121_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2267 kb)

References

  1. Baker MN (1981) The quest for pure water: the history of water purification from the earliest records to the twentieth century. American Water Works Association, New York, pp 64–80Google Scholar
  2. Bowen WR, Jenner F (1995) Theoretical descriptions of membrane filtration of colloids and fine particles: an assessment and review. Adv Colloid Interface Sci 56:141–200CrossRefGoogle Scholar
  3. Cadotte JE, Petersen RJ, Larson RE et al (1980) A new thin-film composite seawater reverse osmosis membrane. Desalination 32:25–31CrossRefGoogle Scholar
  4. Carpenter AW, de Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49(9):5277–5287CrossRefGoogle Scholar
  5. Chen P, Cho SY, Jin HJ (2010) Modification and applications of bacterial celluloses in polymer science. Macromol Res 18(4):309–320CrossRefGoogle Scholar
  6. Chun SJ, Choi ES, Lee EH et al (2012) Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem 22(32):16618–16626CrossRefGoogle Scholar
  7. Ferraz N, Leschinskaya A, Toomadj F et al (2013) Membrane characterization and solute diffusion in porous composite nanocellulose membranes for hemodialysis. Cellulose 20(6):2959–2970CrossRefGoogle Scholar
  8. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687CrossRefGoogle Scholar
  9. Henmi M, Nakatsuji K, Ichikawa T et al (2012) Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv Mater 24(17):2218CrossRefGoogle Scholar
  10. Isogai A, Hänninen T, Fujisawa S et al (2018) Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog Polym Sci 86:122–148CrossRefGoogle Scholar
  11. Jakob HF, Fengel D, Tschegg SE et al (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28(26):8782–8787CrossRefGoogle Scholar
  12. Jelen P (1998) Ultrafiltration and microfiltration handbook. Int Dairy J 8(8):76–77Google Scholar
  13. Karan S, Samitsu S, Peng X et al (2012) Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets. Science 335(6067):444–447CrossRefGoogle Scholar
  14. Karim Z, Mathew AP, Grahn M et al (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676CrossRefGoogle Scholar
  15. Karim Z, Claudpierre S, Grahn M et al (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428CrossRefGoogle Scholar
  16. Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  17. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRefGoogle Scholar
  18. Kong L, Zhang D, Shao Z et al (2014) Superior effect of TEMPO-oxidized cellulose nanofibrils (TOCNs) on the performance of cellulose triacetate (CTA) ultrafiltration membrane. Desalination 332(1):117–125CrossRefGoogle Scholar
  19. Ling S, Chen W, Fan Y et al (2018a) Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 85:1–56CrossRefGoogle Scholar
  20. Ling S, Kaplan DL, Buehler MJ (2018b) Nanofibrils in nature and materials engineering. Nat Rev Mater 3:18016CrossRefGoogle Scholar
  21. Liu T, Zhou H, Graham N et al (2018) The antifouling performance of an ultrafiltration membrane with pre-deposited carbon nanofiber layers for water treatment. J Membr Sci 557:87–95CrossRefGoogle Scholar
  22. Lv J, Zhang G, Zhang H et al (2018) Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal. Appl Surf Sci 440:1091–1100CrossRefGoogle Scholar
  23. Ma H, Yoon K, Rong L et al (2010) High-flux thin-film nanofibrous composite ultrafiltration membranes containing cellulose barrier layer. J Mater Chem 20(22):4692–4704CrossRefGoogle Scholar
  24. Ma H, Burger C, Hsiao BS et al (2011a) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21(21):7507–7510CrossRefGoogle Scholar
  25. Ma H, Burger C, Hsiao BS et al (2011b) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules 13(1):180–186CrossRefGoogle Scholar
  26. Ma H, Burger C, Hsiao BS et al (2014) Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J Membr Sci 454(6):272–282CrossRefGoogle Scholar
  27. Mautner A, Lee KY, Lahtinen P et al (2014) Nanopapers for organic solvent nanofiltration. Chem Commun 50(43):5778–5781CrossRefGoogle Scholar
  28. Mautner A, Lee KY, Tammelin T et al (2015) Cellulose nanopapers as tight aqueous ultra-filtration membranes. React Funct Polym 86:209–214CrossRefGoogle Scholar
  29. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRefGoogle Scholar
  30. Mungray AA, Murthy ZVP (2012) Comparative performance study of four nanofiltration membranes in the separation of mercury and chromium. Ionics 18(8):811–816CrossRefGoogle Scholar
  31. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33(11):1647–1651CrossRefGoogle Scholar
  32. Pesek SC, Koros WJ (1994) Aqueous quenched asymmetric polysulfone hollow fibers prepared by dry/wet phase separation. J Membr Sci 88(1):1–19CrossRefGoogle Scholar
  33. Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRefGoogle Scholar
  34. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  35. Soeta H, Fujisawa S, Saito T et al (2015) Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate. ACS Appl Mater Interfaces 7(20):11041–11046CrossRefGoogle Scholar
  36. Sun B, Hou Q, Liu Z et al (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22(2):1135–1146CrossRefGoogle Scholar
  37. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165CrossRefGoogle Scholar
  38. Van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12(2):208–211CrossRefGoogle Scholar
  39. Wang R, Guan S, Sato A et al (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci 446:376–382CrossRefGoogle Scholar
  40. Wang Z, Crandall C, Prautzsch VL et al (2017) Electrospun regenerated cellulose nanofiber membranes surface-grafted with water-insoluble poly (HEMA) or water-soluble poly (AAS) chains via the ATRP method for ultrafiltration of wate. ACS Appl Mater Interfaces 9(4):4272–4278CrossRefGoogle Scholar
  41. Wessling M, Lopez ML, Strathmann H (2001) Accelerated plasticization of thin-film composite membranes used in gas separation. Sep Purif Technol 24(1–2):223–233CrossRefGoogle Scholar
  42. Xu X, Yang YQ, Xing YY et al (2013) Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes. Carbohydr Polym 98(2):1573–1577CrossRefGoogle Scholar
  43. Yang N, Zhang W, Ye C et al (2018) Nanobiopolymers fabrication and their life cycle assessments. Biotechnol J 1700754:1–13Google Scholar
  44. Yano H, Sugiyama J, Nakagaito A et al (2010) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, College of Chemical EngineeringNanjing Forestry UniversityNanjingChina
  2. 2.Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals, College of Chemical EngineeringNanjing Forestry UniversityNanjingChina

Personalised recommendations