Advertisement

Cellulose

, Volume 25, Issue 12, pp 7225–7238 | Cite as

Chemically cross-linked aerogels based on cellulose nanocrystals and polysilsesquioxane

  • Daniela de Morais Zanata
  • Liliane Cristina Battirola
  • Maria do Carmo Gonçalves
Original Paper
  • 111 Downloads

Abstract

In this work, we report one-pot synthesis of free standing and porous hybrid cross-linked aerogels based on cellulose nanocrystals (CNCs) and polysilsesquioxane (PSS). The synthesis of the aerogel was carried out in two steps. The first was CNC surface modification, using a 3-isocyanatopropyltriethoxysilane, and the second, a sol–gel process, resulting in the formation of a PSS network which cross-linked with the nanoparticles. 29Si solid state NMR analysis revealed that this network was mostly made up of linear and three-dimensional PSS domains. Aerogels showed shape stability and high porosity (> 89%). The presence of macro and mesopores was confirmed by SEM and BET analyses, respectively, and the presence of the PSS network domains in the pore walls was characterized by TEM. In addition, these CNC/PSS aerogels were omniphilic, absorbing approximately the same amount of both water and toluene. These characteristics make these aerogels interesting material to be used as absorbents for a wide variety of spills.

Graphical abstract

Keywords

Cellulose nanocrystals Polysilsesquioxane Aerogels Silane Sol–gel process 

Notes

Acknowledgments

This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grants 2010/17804-7 and 2016/02414-5), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant 136786/2015-4) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes-PNPD, L. C. Battirola fellowship). The authors also gratefully acknowledge the National Institute for Complex Functional Materials (Inomat/INCT), the Brazilian Nanotechnology National Laboratory (LME/LNNano) and staff for the use of TEM facilities, MSc Laura C. E. da Silva and PhD Douglas S. da Silva for TEM measurements. The authors particularly thank Prof. Maria Isabel Felisberti for her assistance in compression tests and data analysis.

Supplementary material

10570_2018_2090_MOESM1_ESM.docx (5.1 mb)
Supplementary material 1 (DOCX 5249 kb)

References

  1. Abraham E, Weber DE, Sharon S et al (2017) Multifunctional cellulosic scaffolds from modified cellulose nanocrystals. ACS Appl Mater Interfaces 9:2010–2015.  https://doi.org/10.1021/acsami.6b13528 CrossRefPubMedGoogle Scholar
  2. Agustin MB, Ahmmad B, Alonzo SMM, Patriana FM (2014) Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinf Plast Compos 33:2205–2213.  https://doi.org/10.1177/0731684414558325 CrossRefGoogle Scholar
  3. Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298.  https://doi.org/10.1039/c001939a CrossRefGoogle Scholar
  4. Brandão LR, Yoshida IVP, Felisberti MI, Gonçalves MDC (2013) Preparation and characterization of cellulose acetate/polysiloxane composites. Cellulose 20:2791–2802.  https://doi.org/10.1007/s10570-013-0039-8 CrossRefGoogle Scholar
  5. Brinker CJ (1988) Hydrolysis and condensation of silicates: effects on structure. J Non Cryst Solids 100:31–50.  https://doi.org/10.1016/0022-3093(88)90005-1 CrossRefGoogle Scholar
  6. Cai J, Liu S, Feng J et al (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079.  https://doi.org/10.1002/anie.201105730 CrossRefGoogle Scholar
  7. Chatterjee S, Sen Gupta S, Kumaraswamy G (2016) Omniphilic polymeric sponges by ice templating. Chem Mater 28:1823–1831.  https://doi.org/10.1021/acs.chemmater.5b04988 CrossRefGoogle Scholar
  8. Chu G, Qu D, Zussman E, Xu Y (2017) Ice-assisted assembly of liquid crystalline cellulose nanocrystals for preparing anisotropic aerogels with ordered structures. Chem Mater 29:3980–3988.  https://doi.org/10.1021/acs.chemmater.7b00361 CrossRefGoogle Scholar
  9. Cunha AG, Freire CSR, Silvestre AJD et al (2010) Preparation and characterization of novel highly omniphobic cellulose fibers organic–inorganic hybrid materials. Carbohydr Polym 80:1048–1056.  https://doi.org/10.1016/j.carbpol.2010.01.023 CrossRefGoogle Scholar
  10. Dai D, Fan M (2011) Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy. Vib Spectrosc 55:300–306.  https://doi.org/10.1016/j.vibspec.2010.12.009 CrossRefGoogle Scholar
  11. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater.  https://doi.org/10.1021/acs.chemmater.7b00531 CrossRefGoogle Scholar
  12. de Junior ARO, Yoshida IVP, Ferrarezi MMF, do Gonçalves MDC (2012) Cellulose acetate/polysilsesquioxane composites: thermal properties and morphological characterization by electron spectroscopy imaging. J Appl Polym Sci 123:2027–2035.  https://doi.org/10.1002/app34707 CrossRefGoogle Scholar
  13. de Oliveira Taipina M, Ferrarezi MMF, Yoshida IVP, Gonçalves MDC (2013) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20:217–226.  https://doi.org/10.1007/s10570-012-9820-3 CrossRefGoogle Scholar
  14. Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779.  https://doi.org/10.1039/c4nr01756k CrossRefPubMedGoogle Scholar
  15. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  16. Gaspar D, Fernandes SN, de Oliveira AG et al (2014) Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25:094008.  https://doi.org/10.1088/0957-4484/25/9/094008 CrossRefPubMedGoogle Scholar
  17. Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448.  https://doi.org/10.1039/c0gc00035c CrossRefGoogle Scholar
  18. Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166.  https://doi.org/10.1016/j.carbpol.2013.10.054 CrossRefPubMedGoogle Scholar
  19. Jiang F, Hsieh Y-L (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem C 2:6337–6342.  https://doi.org/10.1039/c4ta00743c CrossRefGoogle Scholar
  20. Khanjanzadeh H, Behrooz R, Bahramifar N et al (2017) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Biol Macromol.  https://doi.org/10.1016/j.ijbiomac.2017.08.136 CrossRefPubMedGoogle Scholar
  21. Kumaraswamy G, Chatterjee S, Sen Gupta S (2017) Macroporous omniphilic sponges. Patent number: US2017145179Google Scholar
  22. Liao C, Zhao J, Yu P et al (2012) Synthesis and characterization of low content of different SiO2 materials composite poly (vinylidene fluoride) ultrafiltration membranes. Desalination 285:117–122.  https://doi.org/10.1016/j.desal.2011.09.042 CrossRefGoogle Scholar
  23. Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393.  https://doi.org/10.1039/c3nr06761k CrossRefPubMedGoogle Scholar
  24. Ly B, Thielemans W, Dufresne A et al (2008) Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Compos Sci Technol 68:3193–3201.  https://doi.org/10.1016/j.compscitech.2008.07.018 CrossRefGoogle Scholar
  25. Madhusudana Rao K, Kumar A, Han SS (2017) Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int J Biol Macromol 101:165–171.  https://doi.org/10.1016/j.ijbiomac.2017.03.080 CrossRefPubMedGoogle Scholar
  26. Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738.  https://doi.org/10.1007/s10570-015-0747-3 CrossRefGoogle Scholar
  27. Oudiani E, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr Polym 86:1221–1229.  https://doi.org/10.1016/j.carbpol.2011.06.037 CrossRefGoogle Scholar
  28. Peng Y, Gardner DJ, Han Y et al (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392.  https://doi.org/10.1007/s10570-013-0019-z CrossRefGoogle Scholar
  29. Prasad V, Kumar N, Mishra PR (2007) Amphiphilic gels as a potential carrier for topical drug delivery. Drug Deliv 14:75–85.  https://doi.org/10.1080/10717540600642431 CrossRefPubMedGoogle Scholar
  30. Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598.  https://doi.org/10.1021/acs.langmuir.6b03765 CrossRefPubMedGoogle Scholar
  31. Salon MCB, Gerbaud G, Abdelmouleh M et al (2007) Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn Reson Chem 45:473–483.  https://doi.org/10.1002/mrc.1994 CrossRefPubMedGoogle Scholar
  32. Segal L, Creely JJ, Martin A, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794.  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  33. Thakur MK, Gupta RK, Thakur VK (2014) Surface modification of cellulose using silane coupling agent. Carbohydr Polym.  https://doi.org/10.1016/j.carbpol.2014.05.041 CrossRefPubMedGoogle Scholar
  34. Visanko M, Liimatainen H, Sirviö JA et al (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil–water stabilizer. Biomacromolecules 15:2769–2775.  https://doi.org/10.1021/bm500628g CrossRefPubMedGoogle Scholar
  35. Wang G, He Y, Wang H et al (2015a) A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation. Green Chem 17:3093–3099.  https://doi.org/10.1039/c5gc00025d CrossRefGoogle Scholar
  36. Wang S, Peng X, Zhong L et al (2015b) An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J Mater Chem A 3:8772–8781.  https://doi.org/10.1039/c4ta07057g CrossRefGoogle Scholar
  37. Wang K, Nune KC, Misra RDK (2016) The functional response of alginate–gelatin–nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151.  https://doi.org/10.1016/j.actbio.2016.03.016 CrossRefPubMedGoogle Scholar
  38. Way AE, Hsu L, Shanmuganathan K et al (2012) PH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006.  https://doi.org/10.1021/mz3003006 CrossRefGoogle Scholar
  39. Wu Y, Cao F, Jiang H, Zhang Y (2017) Preparation and characterization of aminosilane-functionalized cellulose nanocrystal aerogel. Mater Res Express 4:085303.  https://doi.org/10.1088/2053-1591/aa8067 CrossRefGoogle Scholar
  40. Xu Y-T, Dai Y, Nguyen T-D et al (2018) Aerogel materials with periodic structures imprinted with cellulose nanocrystals. Nanoscale.  https://doi.org/10.1039/c7nr07719j CrossRefPubMedGoogle Scholar
  41. Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025.  https://doi.org/10.1021/cm502873c CrossRefGoogle Scholar
  42. Yang J, Han CR, Duan JF et al (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207.  https://doi.org/10.1021/am4001997 CrossRefPubMedGoogle Scholar
  43. Yang X, Shi K, Zhitomirsky I, Cranston ED (2015) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27:6104–6109.  https://doi.org/10.1002/adma.201502284 CrossRefPubMedGoogle Scholar
  44. Zanini M, Lavoratti A, Lazzari LK et al (2016) Producing aerogels from silanized cellulose nanofiber suspension. Cellulose.  https://doi.org/10.1007/s10570-016-1142-4 CrossRefGoogle Scholar
  45. Zhang Z, Sèbe G, Rentsch D et al (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668.  https://doi.org/10.1021/cm5004164 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations