Advertisement

Cellulose

, Volume 25, Issue 12, pp 7211–7224 | Cite as

NaOH/urea solution spinning of cellulose hybrid fibers embedded with Ag nanoparticles: influence of stretching on structure and properties

  • Feiya Fu
  • Weilan Zhang
  • Ruihong Zhang
  • Lin Liu
  • Shichang Chen
  • Yupeng Zhang
  • Binbin Yang
  • Salvia Touhid
  • Xiangdong Liu
  • Jinping Zhou
  • Juming Yao
Original Paper
  • 142 Downloads

Abstract

Cellulose hybrid fibers embedded with silver nanoparticles (Ag NPs) were prepared from a spinning dope through a bottom-up approach. Instead of using toxic agents or high temperature, an alkaline cellulose dope was directly used as a reducing agent for in situ synthesis of Ag NPs. The regenerated cellulose fibers displayed a dense circular microstructure and Ag NPs with a mean diameter of 40.1 nm were inlaid on its surface and inside. By increasing the spinning drawing ratio, the diameter and Ag content of the nanohybrid fibers decreased while its tensile strength in dry state increased significantly. Because of the embedded structure of NPs, the width of inhibition zone for the nanohybrid fibers against S. aureus and E. coli was small. However, both bacteria could be killed within 5 h in the presence of the nanobybrid fibers. In particular, the nanobybrid fibers showed excellent antibacterial durability and low cell toxicity. Besides, it was demonstrated that the nanobybrid fibers with lower diameter showed better catalytic activity and the catalytic efficiency could reach 99.3% for methyl orange. This biosynthesis approach is expected to offer a sustainable method for scale-up fabrication of functional cellulose fibers.

Graphical abstract

Keywords

Cellulose solution Wet-spinning Hybrid fibers Antibacterial activity Photocatalytic activity 

Notes

Acknowledgments

This work was financially supported by the Public Welfare Technology Application Research Project of Zhejiang Province (2017C33154), the Science Foundation of Zhejiang Sci-Tech University (ZSTU) (15012080-Y), the Zhejiang Top Priority Discipline of Textile Science and Engineering (2014YBZX03), the Young Researchers Foundation of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University (2015QN03 and 2016QN02), the Natural Science Foundation of China (51573167), and National Undergraduate Training Program for Innovation and Entrepreneurship (201710338001).

Supplementary material

10570_2018_2082_MOESM1_ESM.mpg (8.6 mb)
Supplementary material 1 (MPG 8812 kb)
10570_2018_2082_MOESM2_ESM.docx (62 kb)
Supplementary material 2 (DOCX 61 kb)

References

  1. Abid M, Bouattour S, Ferraria AM, Conceicao DS, Carapeto AP, Vieira Ferreira LF, Botelho do Rego AM, Chehimi MM, Vilar MR, Boufi S (2017) Facile functionalization of cotton with nanostructured silver/titania for visible-light plasmonic photocatalysis. J Colloid Interface Sci 507:83–94CrossRefGoogle Scholar
  2. Andrade PF, Faria AFD, Quites FJ, Oliveira SR, Alves OL, Arruda MAZ, Gonçalves MDC (2015) Inhibition of bacterial adhesion on cellulose acetate membranes containing silver nanoparticles. Cellulose 22:3895–3906CrossRefGoogle Scholar
  3. Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial, and photocatalytic properties. Langmuir 31:11605–11612CrossRefGoogle Scholar
  4. Bai Q, Xiong Q, Li C, Shen Y, Uyama H (2017) Hierarchical porous carbons from poly(methyl methacrylate)/bacterial cellulose composite monolith for high-performance supercapacitor electrodes. ACS Sustain Chem Eng 5:9390–9401CrossRefGoogle Scholar
  5. Bhui DK, Misra A (2012) Synthesis of worm like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity. Carbohydr Polym 89:830–835CrossRefGoogle Scholar
  6. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRefGoogle Scholar
  7. Chen X, Chen X, Cai XM, Huang S, Wang F (2018) Cellulose dissolution in a mixed solvent of tetra(n-butyl)ammonium hydroxide/dimethyl sulfoxide via radical reactions. ACS Sustain Chem Eng 6:2898–2904CrossRefGoogle Scholar
  8. Collazo-Bigliardi S, Ortega-Toro R, Boix AC (2018) Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr Polym 191:205–215CrossRefGoogle Scholar
  9. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRefGoogle Scholar
  10. Fu F, Guo Y, Wang Y, Tan Q, Zhou J, Zhang L (2014a) Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH/ZnO aqueous solution. Cellulose 21:2819–2830CrossRefGoogle Scholar
  11. Fu F, Yang Q, Zhou J, Hu H, Jia B, Zhang L (2014b) Structure and properties of regenerated cellulose fibers prepared from cellulose carbamate-NaOH/ZnO aqueous solution. ACS Sustain Chem Eng 2:2604–2612CrossRefGoogle Scholar
  12. Fu F, Gu J, Cao J, Shen R, Liu H, Zhang Y, Liu X, Zhou J (2018) Reduction of silver ions using an alkaline cellulose dope: straightforward access to Ag/ZnO decorated cellulose nanocomposite film with enhanced antibacterial activities. ACS Sustain Chem Eng 6:738–748CrossRefGoogle Scholar
  13. Han Y, Wu X, Zhang X, Zhou Z, Lu C (2016) Reductant-free synthesis of silver nanoparticles-doped cellulose microgels for catalyzing and product separation. ACS Sustain Chem Eng 4:6322–6331CrossRefGoogle Scholar
  14. Hua D, Mcshan D, Ying Z, Sinha SS, Arslan Z, Ray PC, Yu H (2016) Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol 50:8840–8848CrossRefGoogle Scholar
  15. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104CrossRefGoogle Scholar
  16. Jarrah K, Hisaindee S, Al-Sayah MH (2018) Preparation of oil sorbents by solvent-free grafting of cellulose cotton fibers. Cellulose 25:4093–4106CrossRefGoogle Scholar
  17. Kang F, Alvarez PJ, Zhu D (2014) Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ Sci Technol 48:316–322CrossRefGoogle Scholar
  18. Khan M, Yi Z, Gul SR, Wang Y, Fawad U (2017) Visible-light-active silver-, vanadium-codoped TiO2 with improved photocatalytic activity. J Mater Sci 52:5634–5640CrossRefGoogle Scholar
  19. Kim HJ, Castaneda R, Kang TH, Kimura S, Wada M, Kim UJ (2018) Cellulose hydrogel film for spheroid formation of human adipose-derived stemcells. Cellulose 25:2589–2598CrossRefGoogle Scholar
  20. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96:13611–13614CrossRefGoogle Scholar
  21. Liang M, Zhang G, Feng Y, Li R, Hou P, Zhang J, Wang J (2018) Facile synthesis of silver nanoparticles on amino-modified cellulose paper and their catalytic properties. J Mater Sci 53:1568–1579CrossRefGoogle Scholar
  22. Liu C, Yang D, Wang Y, Shi J, Jiang Z (2012) Fabrication of antimicrobial bacterial cellulose-Ag/AgCl nanocomposite using bacteria as versatile biofactory. J Nanopart Res 14:1084CrossRefGoogle Scholar
  23. Liu H, Huang J, Gao Y, Sun D, Li J, Li X, Zhang Z, Li Q (2013) Production of silver nanoparticles in a continuous stirred tank reactor based on plant-mediated biosynthesis: flow behaviors and residence time distribution prediction by computational fluid dynamics simulation. Ind Eng Chem Res 52:2280–2289CrossRefGoogle Scholar
  24. Liu S, Yu J, Wang T, Li F (2017) A multifunctional Ag/PAOCG reusable substrate for p-nitrophenol reduction and SERS applications. J Mater Sci 52:13748–13763CrossRefGoogle Scholar
  25. Lv PF, Zhou HM, Zhao M, Li DW, Lu KY, Wang D, Huang JY, Cai YB, Lucia LA, Wei QF (2018) Highly flexible, transparent, and conductive silver nanowire-attached bacterial cellulose conductors. Cellulose 25:3189–3196CrossRefGoogle Scholar
  26. Ma P, Jiang L, Yu M, Dong W, Chen M (2016) Green antibacterial nanocomposites from poly(lactide)/poly(butylene adipate-co-terephthalate)/nanocrystal cellulose silver nanohybrids. ACS Sustain Chem Eng 4:6417–6426CrossRefGoogle Scholar
  27. Maham M, Nasrollahzadeh M, Sajadi SM, Nekoei M (2017) Biosynthesis of Ag/reduced graphene oxide/Fe3O4 using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes. J Colloid Interface Sci 497:33–42CrossRefGoogle Scholar
  28. Mahdieh ZM, Shekarriz S, Taromi FA, Montazer M (2018) A new method for in situ synthesis of Ag–TiO2 nanocomposite particles on polyester/cellulose fabric by photoreduction and self-cleaning properties. Cellulose 25:2355–2366CrossRefGoogle Scholar
  29. Maji TK, Basu D, Datta C, Banerjee A (2002) Studies of mechanical and moisture regain properties of methyl methacrylate grafted silk fibers. J Appl Polym Sci 84:969–974CrossRefGoogle Scholar
  30. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRefGoogle Scholar
  31. Meulendijks N, Burghoorn M, van Ee R, Mourad M, Mann D, Keul H, Bex G, van Veldhoven E, Verheijen M, Buskens P (2017) Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals. Cellulose 24:2191–2204CrossRefGoogle Scholar
  32. Mihaly-Cozmuta A, Peter A, Craciun G, Falup A, Mihaly-Cozmuta L, Nicula C, Vulpoi A, Baia M (2017) Preparation and characterization of active cellulose-based papers modified with TiO2, Ag and zeolite nanocomposites for bread packaging application. Cellulose 24:3911–3928CrossRefGoogle Scholar
  33. Milosevic M, Saponjic Z, Nunney T, Deeks C, Radoicic M, Mitric M, Radetic T, Radetic M (2017) In situ photoreduction of Ag + -ions on the surface of titania nanotubes deposited on cotton and cotton/PET fabrics. Cellulose 24:1597–1610CrossRefGoogle Scholar
  34. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  35. Peng X, Wang S, Zhang X, Shu Y, Su S, Zhu J (2017) Ag@AgCl embedded on cellulose film: a stable, highly efficient and easily recyclable photocatalyst. Cellulose 24:4683–4689CrossRefGoogle Scholar
  36. Rac-Rumijowska O, Fiedot M, Karbownik I, Suchorska-Wozniak P, Teterycz H (2017) Synthesis of silver nanoparticles in NMMO and their in situ doping into cellulose fibers. Cellulose 24:1355–1370CrossRefGoogle Scholar
  37. Reddy N, Yang Y (2010) Structure and properties of ultrafine silk fibers produced by Theriodopteryx ephemeraeformis. J Mater Sci 45:6617–6622CrossRefGoogle Scholar
  38. Rehan M, El-Naggar ME, Mashaly HM, Wilken R (2018) Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydr Polym 182:29–41CrossRefGoogle Scholar
  39. Rojas-Andrade M, Cho AT, Hu P, Lee SJ, Deming CP, Sweeney SW, Saltikov C, Chen S (2015) Enhanced antimicrobial activity with faceted silver nanostructures. J Mater Sci 50:2849–2858CrossRefGoogle Scholar
  40. Shaheen TI, Fouda A (2018) Green approach for one-pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterial assessment. Int J Biol Macromol 106:784–792CrossRefGoogle Scholar
  41. Siegbahn K (1967) ESCA: atomic, molecular and solid state structure studied by means of electron spectroscopy. Nov.act.uppsaliensisGoogle Scholar
  42. Smiechowicz E, Niekraszewicz B, Kulpinski P, Dzitko K (2018) Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica. Cellulose 25:3499–3517CrossRefGoogle Scholar
  43. Sorbiun M, Mehr ES, Ramazani A, Fardood ST (2018) Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. J Mater Sci 29:2806–2814Google Scholar
  44. Tang J, Shi Z, Berry RM, Tam KC (2015) Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of beta-cyclodextrin. Ind Eng Chem Res 54:3299–3308CrossRefGoogle Scholar
  45. Tran CD, Prosenc F, Franko M, Benzi G (2016) One-pot synthesis of biocompatible silver nanoparticle composites from cellulose and keratin: characterization and antimicrobial activity. ACS Appl Mater Interfaces 8:34791–34801CrossRefGoogle Scholar
  46. Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, Hu L (2017) Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv Mater 29:1702498CrossRefGoogle Scholar
  47. Wu X, Lu C, Zhang W, Yuan G, Xiong R, Zhang X (2013) A novel reagentless approach for synthesizing cellulose nanocrystal-supported palladium nanoparticles with enhanced catalytic performance. J Mater Chem A 1:8645–8652CrossRefGoogle Scholar
  48. Wu M, Ma B, Pan T, Chen S, Sun J (2016) Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties. Adv Funct Mater 26:569–576CrossRefGoogle Scholar
  49. Wu CN, Fuh SC, Lin SP, Lin YY, Chen HY, Liu JM, Cheng KC (2018) TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromol 19:544–554CrossRefGoogle Scholar
  50. Xu W, Kong JS, Yeh YTE, Chen P (2008) Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat Mater 7:992CrossRefGoogle Scholar
  51. Xu Q, Ke X, Cai D, Zhang Y, Fu F, Endo T, Liu X (2018) Silver-based, single-sided antibacterial cotton fabrics with improved durability via an l-cysteine binding effect. Cellulose 25:2129–2141CrossRefGoogle Scholar
  52. Yang Y, Zhang Y, Dawelbeit A, Deng Y, Lang Y, Yu M (2017) Structure and properties of regenerated cellulose fibers from aqueous NaOH/thiourea/urea solution. Cellulose 24:4123–4137CrossRefGoogle Scholar
  53. Zhang H, Li X, Chen G (2009) Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. J Mater Chem 19:8223–8231CrossRefGoogle Scholar
  54. Zhang Y, Xu Q, Fu F, Liu X (2016) Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose 23:2791–2808CrossRefGoogle Scholar
  55. Zhang X, Shu Y, Su S, Zhu J (2018) One-step coagulation to construct durable anti-fouling and antibacterial cellulose film exploiting Ag@AgCl nanoparticle-triggered photo-catalytic degradation. Carbohydr Polym 181:499–505CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Feiya Fu
    • 1
    • 2
  • Weilan Zhang
    • 1
    • 2
  • Ruihong Zhang
    • 1
    • 2
  • Lin Liu
    • 1
    • 2
  • Shichang Chen
    • 1
    • 2
  • Yupeng Zhang
    • 1
    • 2
  • Binbin Yang
    • 1
    • 2
  • Salvia Touhid
    • 1
    • 2
  • Xiangdong Liu
    • 1
    • 2
  • Jinping Zhou
    • 3
  • Juming Yao
    • 1
    • 2
  1. 1.Department of Materials Engineering, College of Materials and TextileZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Advanced Textile Materials and Manufacturing TechnologyZhejiang Sci-Tech University, Ministry of EducationHangzhouPeople’s Republic of China
  3. 3.Department of Chemistry and Key Laboratory of Biomedical Polymers of Ministry of EducationWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations