, Volume 26, Issue 1, pp 5–15 | Cite as

Transmission electron microscopy of cellulose. Part 1: historical perspective

  • Yu OgawaEmail author
  • Henri Chanzy
  • Jean-Luc Putaux
Original Paper


Following the first electron micrographs of cotton in 1940, the development of transmission electron microscopy applied to native cellulose has been evolving in a series of successive advances. At first, faced with the weak contrast of the early images, the operators had to use specific electron-dense contrasting agents to reveal the ultrastructure of their samples. It was thus found that all native celluloses consisted of microfibrils, with some size variations depending on the sample origin. Following this, a major advance was achieved when the electron microscopes could be adjusted with low electron doses, allowing the recording of diffraction diagrams from the electron beam-sensitive cellulose samples. Under these conditions, one could obtain information of cellulose itself and not, as before, of the contrasting agent. This important development applied to microdiffraction conditions revealed that some large cellulose microfibrils could yield spot diagrams typical of single crystals. Their recording led to a decisive progress for resolving the molecular and crystal structure of the two cellulose allomorphs, cellulose Iα and Iβ. Using various combinations of diffracted beams to create the images, the so called “diffraction contrast images” could then be developed. These micrographs showed many aspects of the crystalline core of cellulose, including spectacular high-resolution images showing the molecular planes of cellulose in their crystalline environment. Today, electron diffraction, diffraction contrast imaging and low-dose electron microscopy have become major tools to follow the effect of various physical, chemical and biochemical processes at the cellulose crystalline level.

Graphical abstract


Cellulose Nanocellulose Transmission electron microscopy Electron diffraction 


  1. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefPubMedGoogle Scholar
  2. Balashov V, Preston RD (1955) Fine structure of cellulose and other microfibrillar substances. Nature 176:64–65CrossRefGoogle Scholar
  3. Bittiger H, Husemann E, Kuppel A (1969) Electron microscope investigations of fibril formation. J Polym Sci Part C 28:45–56CrossRefGoogle Scholar
  4. Bourret A, Chanzy H, Lazaro R (1972) Crystallite features of Valonia cellulose by electron diffraction and dark field microscopy. Biopolymers 11:893–898CrossRefGoogle Scholar
  5. Buléon A, Chanzy H, Roche E (1976) Shish kebab-like structure of cellulose. Polym Lett 15:265–270CrossRefGoogle Scholar
  6. Chanzy HD (1975) Irradiation de la cellulose de Valonia au microscope à 1 MV. Bull BIST, CEA 207:55–57Google Scholar
  7. Chanzy H (1990) Aspects of cellulose structure. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose sources and exploitation. Industrial utilization, biotechnology and physico-chemical properties. Ellis Horwood Ltd, Chichester, pp 3–12Google Scholar
  8. Chanzy H, Henrissat B (1985) Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett 184:285–288CrossRefGoogle Scholar
  9. Chanzy HD, Roche EJ (1976) Fibrous transformation of Valonia cellulose I into cellulose II. Appl Polym Symp 28:701–711Google Scholar
  10. Chanzy H, Imada K, Vuong R (1978) Electron diffraction from the primary wall of cotton fibers. Protoplasma 94:299–306CrossRefGoogle Scholar
  11. Chanzy H, Imada K, Mollard A, Vuong R, Barnoud F (1979) Crystallographic aspects of sub-elementary fibrils occurring in the wall of the rose cells cultures in vitro. Protoplasma 100:303–316CrossRefGoogle Scholar
  12. Chanzy H, Henrissat B, Vuong R (1986) Structural changes of cellulose crystals during the reversible transformation cellulose I ⇄ IIII in Valonia. Holzforschung 40:25–30Google Scholar
  13. Dennis DT, Preston RD (1961) Constitution of cellulose microfibrils. Nature 191:667–668CrossRefGoogle Scholar
  14. Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibrils: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRefPubMedGoogle Scholar
  15. Ding S-Y, Zhao S, Zeng Y (2014) Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose 21:863–871CrossRefGoogle Scholar
  16. Eisenhut O, Kuhn E (1942) Lichtmikroskopische und übermikroskopische Untersuchungen an natürlichen und künstlichen Cellulosefasern. Angew Chem 55:198–206CrossRefGoogle Scholar
  17. Fengel D (1974) 10-Å-Fibrillen in cellulose. Naturwiss 61:31–32CrossRefGoogle Scholar
  18. Franke WW, Ermen B (1969) Negative staining of plant slime cellulose: an examination of the elementary fibril concept. Z Natusforsh 24b:918–922CrossRefGoogle Scholar
  19. Franke WW, Falk H (1968) Enzymatisch isolierte Cellulose-Fibrillen der Valonia-Zellwand. Z Naturforsch 23b:272–274CrossRefGoogle Scholar
  20. Franz E, Schiebold E, Weygand C (1943) Über den morphologischen Aufbau der Bakterienzellulose. Natuswissenschaften 31:350CrossRefGoogle Scholar
  21. Frey-Wyssling A (1937) Röntgenmetrische Vermessung der submikroskopischen Räume in Gerüstubstanzen. Protoplasma 27:372–411CrossRefGoogle Scholar
  22. Frey-Wyssling A (1954) The fine structure of cellulose microfibrils. Science 119:80–82CrossRefPubMedGoogle Scholar
  23. Frey-Wyssling A, Frey R (1950) Tunicin im Elektronenmikroscop. Protoplasma 39:656–660CrossRefGoogle Scholar
  24. Frey-Wyssling A, Mühlethaler K (1946) Submicroscopic structure of cellulose. J Polym Sci 1:172–174CrossRefGoogle Scholar
  25. Frey-Wyssling A, Mühlethaler K (1963) Die Elementarfibrillen der Cellulose. Makromol Chem 62:25–30CrossRefGoogle Scholar
  26. Frey-Wyssling A, Mühlethaler K, Wyckoff RWG (1948) Mikrofibrillenbau der pflanzlichen Zellwände. Experientia 4:475–476CrossRefGoogle Scholar
  27. Frey-Wyssling A, Mühlethaler K, Muggli R (1966) Elementarfibrillen als Grundbausteine der nativen Cellulose. Holz als Roh-und Werkstoff 24:443–444CrossRefGoogle Scholar
  28. Hamann A (1942) Das Vehalten von Zellulosefasern im Elektronenmikroskop. Kolloid-Z 100:248–254CrossRefGoogle Scholar
  29. Hanna RB, Côté WA Jr (1974) The sub-elementary fibril of plant cell wall cellulose. Cytobiologie 10:102–116Google Scholar
  30. Hebert JJ, Müller LL (1974) An electron diffraction study of the crystal structure of native cellulose. J Appl Polym Sci 18:3373–3377CrossRefGoogle Scholar
  31. Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998a) Molecular imaging of Halocynthia papillosa cellulose. J Struct Biol 124:42–50CrossRefPubMedGoogle Scholar
  32. Helbert W, Sugiyama J, Kimura S, Itoh T (1998b) High-resolution electron microscopy on ultrathin sections of cellulose microfibrils generated by glomerulocytes in Polyzoa vesiculiphora. Protoplasma 203:84–90CrossRefGoogle Scholar
  33. Hengstenberg J, Mark H (1928) Über Form und Grösse der Mizelle von Zellulose und Kautschuk. Z Kristallographie 69:271–284Google Scholar
  34. Herth W, Meyer Y (1977) Ultrastructural and chemical analysis of the wall fibrils synthesized by tobacco mesophyll protoplast. Biol Cell 30:33–40Google Scholar
  35. Herzog RO (1929) Zur Chemie und Physik der Kunsteide. Z Angew Chem 41:531–536CrossRefGoogle Scholar
  36. Herzog RO, Jancke W (1920) Röntgenspektrographische Beobachtungen an Zellulose. Z Phys 3:196–198CrossRefGoogle Scholar
  37. Heyn ANJ (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol 29:181–187CrossRefPubMedPubMedCentralGoogle Scholar
  38. Heyn ANJ (1969) The elementary fibril and supermolecular structure of cellulose in soft wood fiber. J Ultrastruct Res 26:52–68CrossRefPubMedGoogle Scholar
  39. Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23:1807–1810CrossRefGoogle Scholar
  40. Hock CW (1950) Degradation of cellulose as revealed microscopically. Text Res J 20:141–151CrossRefGoogle Scholar
  41. Hock CW (1952) The fibrillate structure of natural cellulose. J Polym Sci 8:425–434CrossRefGoogle Scholar
  42. Honjo G, Watanabe M (1958) Examination of cellulose fibre by the low-temperature specimen method of electron diffraction and electron microscopy. Nature 181:326–328CrossRefGoogle Scholar
  43. Husemann E, Carnap A (1943a) Übermikroskopische Untersuchungen an hydrolytisch abgebauten Fasern. Miteilung über makromolkulare Verbindungen.  J Makromol Chem 1:16–27Google Scholar
  44. Husemann E, Carnap A (1943b) Übermikroskopische Untersuchungen an gemahlenen Cellulosefasern. Miteilung über makromolekulare Verbindungen. J Makromol Chem 1:158–167CrossRefGoogle Scholar
  45. Husemann E, Keilich G (1969) Charakterisierung der Cellulose aus Quittenkernen. Cellul Chem Technol 3:445–453Google Scholar
  46. Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279CrossRefGoogle Scholar
  47. Imai T, Putaux J-L, Sugiyama J (2003) Geometric phase analysis of lattice images from algal cellulose. Polymer 44:1871–1879CrossRefGoogle Scholar
  48. Itoh T, Brown RM Jr (1984) The assembly of cellulose microfibrils in Valonia macrophysa Kütz. Planta 160:372–381CrossRefPubMedGoogle Scholar
  49. Kim N-H, Herth W, Vuong R, Chanzy H (1996) The cellulose system in the cell wall of Micrasterias. J Struct Biol 117:195–203CrossRefPubMedGoogle Scholar
  50. Kim N-H, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromolecules 7:274–280CrossRefPubMedGoogle Scholar
  51. Kimura S, Itoh T (1996) New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194:151–163CrossRefGoogle Scholar
  52. Kimura S, Itoh T (1997) Cellulose network of hemocoel in selected compound styleid ascidians. J Electron Microsc 46:327–335CrossRefGoogle Scholar
  53. Kimura S, Itoh T (2004) Cellulose synthesizing terminal complexes in the ascidians. Cellulose 11:377–383CrossRefGoogle Scholar
  54. Kinsinger WG, Hock CW (1948) Electron microscopical studies of natural cellulose fibers. Ind Eng Chem 40:1711–1716CrossRefGoogle Scholar
  55. Knapek E (1982) Properties of organic specimens and their support at 4 K under irradiation in an electron microscope. Ultramicoscopy 10:71–86CrossRefGoogle Scholar
  56. Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095CrossRefPubMedGoogle Scholar
  57. Kuga S, Brown RM Jr (1987a) Lattice imaging of ramie cellulose. Polym Commun 28:311–314CrossRefGoogle Scholar
  58. Kuga S, Brown RM Jr (1987b) Practical aspects of lattice imaging of cellulose. J Electr Microsc Tech 6:349–356CrossRefGoogle Scholar
  59. Kuga S, Brown RM Jr (1989) Correlation between structure and the biogenic mechanisms of cellulose; new insights based on recent electron microscopic findings. In: Schuerch CS (ed) Cellulose and wood chemistry and technology. Wiley, New York, pp 677–688Google Scholar
  60. Lai-Kee-Him J, Chanzy H, Müller M, Putaux J-L, Imai T, Bulone V (2002) In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem 277:36931–36939CrossRefPubMedGoogle Scholar
  61. Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri T (2003) The binding specificity and affinity determinant of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489CrossRefPubMedGoogle Scholar
  62. Macchi EM (1976) Supermolecular structure for cellulose I. An electron diffraction study on Valonia fibers. Appl Polym Symp 28:763–776Google Scholar
  63. Manley RStJ  (1964) Fine structure of native cellulose microfibrils. Nature 204:1155–1157CrossRefGoogle Scholar
  64. Manley RStJ  (1971) Molecular morphology of cellulose. J Polym Sci A-2 9:1025–1059CrossRefGoogle Scholar
  65. Mary M, Revol J-F, Goring DAI (1986) Mass loss of wood and its components during transmission electron microscopy. J Appl Polym Sci 31:957–963CrossRefGoogle Scholar
  66. Muggli R, Elias H-G, Mühlethaler K (1969) Zum Feinbau der Elementarfibrillen der Cellulose. Die Makromol Chem 121:290–294CrossRefGoogle Scholar
  67. Mühlethaler K (1949) Electron micrographs of plant fibers. Biochim Biophys Acta 3:15–25CrossRefGoogle Scholar
  68. Mühlethaler K (1950) The structure of plant slimes. Exp Cell Res 1:341–350CrossRefGoogle Scholar
  69. Mukherjee SM, Woods HJ (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511CrossRefPubMedGoogle Scholar
  70. Näslund P, Vuong R, Chanzy H, Jésior J-C (1988) Diffraction contrast transmission electron microscopy on flax fiber ultrathin cross sections. Text Res J 58:414–417CrossRefGoogle Scholar
  71. Nishiyama J (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRefGoogle Scholar
  72. Ohad I, Danon D (1964) On the dimensions of cellulose microfibrils. J Cell Biol 22:302–305CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ohad I, Mejzler D (1965) On the ultrastructure of cellulose microfibrils. J Polym Sci A 3:399–406Google Scholar
  74. Paralikar KM, Betrabet SM (1977) Electron diffraction technique for the determination of cellulose crystallinity. J Appl Polym Sci 21:899–903CrossRefGoogle Scholar
  75. Paralikar KM, Betrabet SM, Bhat NV (1979) The crystal structure of cotton cellulose investigated by an electron diffraction technique. J Appl Cryst 12:589–591CrossRefGoogle Scholar
  76. Peterlin A, Ingram P (1970) Morphology of secondary wall fibrils in cotton. Text Res J 40:345–354CrossRefGoogle Scholar
  77. Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall Ltd., LondonGoogle Scholar
  78. Preston RD, Ripley GW (1954) Electron diffraction diagrams of cellulose microfibrils in Valonia. Nature 174:76–77CrossRefGoogle Scholar
  79. Preston RD, Nicolai E, Reed R, Millard A (1948) An electron microscope study of cellulose in the wall of Valonia ventricosa. Nature 162:665–667CrossRefPubMedGoogle Scholar
  80. Rånby B (1952a) Physico-chemical investigations on animal cellulose (Tunicin). Arkiv for Kemi 4:241–248Google Scholar
  81. Rånby B (1952b) Physico-chemical investigations on bacterial cellulose. Arkiv for Kemi 4:249–255Google Scholar
  82. Rånby BG (1954) Über die Feinstruktur der nativen Cellulosefasern. Makromol Chemie 13:40–52CrossRefGoogle Scholar
  83. Rånby B, Ribi E (1950) Über den Feinbau der Zellulose. Experientia 6:12–14CrossRefPubMedGoogle Scholar
  84. Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2:123–124CrossRefGoogle Scholar
  85. Revol J-F (1985) Change of the d-spacing in cellulose crystals during lattice imaging. J Mat Sci Lett 4:1347–1349CrossRefGoogle Scholar
  86. Revol J-F, Goring DAI (1983) Directionality of the fibre c-axis of cellulose crystallites in microfibrils of Valonia ventricosa. Polymer 24:1547–1550CrossRefGoogle Scholar
  87. Revol J-F, Van Daele Y, Gaill F (1990) On the cross sectional shape of cellulose crystallites in the tunicate Halocynthia papillosa. In: Proceedings of the XIIth international congress of electron microscopy. San Francisco Press Inc., pp 566–567Google Scholar
  88. Roche E, Chanzy H (1981) Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int J Biol Macromol 3:201–206CrossRefGoogle Scholar
  89. Ruska H (1940) Über Strukturen von Zellulosefasern. Kolloid-Z 92:276–285CrossRefGoogle Scholar
  90. Ruska E (1944) Zur Enwicklung der Übermikroskopie und über ihre Beziehungen zur Kolloidsforschung. Kolloid-Z 107:2–16CrossRefGoogle Scholar
  91. Ruska E (1987) The development of the electron microscope and of electron microscopy. Rev Modern Phys 59:627–638CrossRefGoogle Scholar
  92. Ruska H, Kretschmer M (1940) Übermikroskopische Untersuchungen den Abbau von Zellulosefasern. Kolloid-Z 93:163–166CrossRefGoogle Scholar
  93. Sponsler OL (1925) X-ray diffraction patterns from plant fibers. J Gen Physiol 9:221–233CrossRefPubMedPubMedCentralGoogle Scholar
  94. Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985a) Lattice image from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168CrossRefPubMedGoogle Scholar
  95. Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985b) Observation of cellulose microfibrils in Valonia macrophysa by high resolution electron microscopy. Mokuzai Gakkaishi 31:61–67Google Scholar
  96. Sugiyama J, Harada H, Saiki H (1987) Crystalline morphology of Valonia macrophysa cellulose IIII revealed by direct lattice imaging. Int J Biol Macromol 9:122–130CrossRefGoogle Scholar
  97. Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198CrossRefGoogle Scholar
  98. Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native cellulose. Macromolecules 24:2461–2466CrossRefGoogle Scholar
  99. Sugiyama J, Vuong R, Chanzy H (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  100. Sugiyama J, Chanzy H, Revol J-F (1994) On the polarity in the cell wall of Valonia. Planta 193:260–265CrossRefGoogle Scholar
  101. Svedberg T (1949) Cellulosans struktur och polymolekylaritet. Svensk Papperstidning 7:157–164Google Scholar
  102. Tsuji M, Roy SK, St. John Manley R (1985) Lattice imaging of radiation-sensitive polymer crystals. J Polym Sci Polym Phys Ed 23:1127–1137CrossRefGoogle Scholar
  103. Van Daele Y, Revol J-F, Gaill F, Goffinet G (1992) Characterization and supramolecular architecture of the cellulose-protein fibrils in the tunic of the sea peach (Halocynthia papillosa, Ascidiacea, Urochordata). Biol Cell 76:87–96CrossRefGoogle Scholar
  104. von Borries B, Ruska E (1939) Ein Übermikroskop für Forschungsinstitute. Naturwiss 27:577–582CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, CERMAVGrenobleFrance

Personalised recommendations