Advertisement

Cellulose

, Volume 25, Issue 12, pp 7153–7165 | Cite as

Mechanical, thermal, and water vapor barrier properties of regenerated cellulose/nano-SiO2 composite films

  • Jeevan Prasad Reddy
  • A. Varada Rajulu
  • Jong-Whan Rhim
  • Jongchul Seo
Original Paper
  • 123 Downloads

Abstract

Bionanocomposite films were fabricated by reinforcing regenerated cellulose (RC) with 3-aminopropyl-functionalized silica nanoparticles (nano-SiO2). The composite films were prepared by dissolving cotton linter RC in a 7% NaOH/12% urea solution followed by the addition of nano-SiO2 and 5% H2SO4 solution. The effects of nano-SiO2 concentration (1–5 wt% with respect to RC) on the morphology, water vapor permeability (WVP), thermal properties, and mechanical properties of the RC/nano-SiO2 composite films were evaluated. Morphological studies indicated uniform dispersions of the low-concentration nano-SiO2 particles in the RC matrix. The tensile strength and modulus were increased by 26% and 15%, respectively, in the presence of 2 wt% of nano-SiO2 relative to the values of neat RC film. The WVP of the RC/nano-SiO2 composite films decreased by 22% after reinforcement with 2 wt% nano-SiO2. The results revealed that there is a potential interaction between RC and nano-SiO2, resulting in improved thermal and mechanical properties of the RC/nano-SiO2 composite films compared to those of neat RC film.

Graphical abstract

Bionanocomposite films were fabricated by reinforcing regenerated cellulose (RC) with 3-amino propyl functionalized silica nanoparticles (nano-SiO2). The effects of nano-SiO2 (1–5 wt% with respect to RC) on the morphology, water vapor permeability (WVP), and thermal and mechanical properties of the RC/nano-SiO2 composite films were evaluated. This study highlights the potential of organically modified nano-SiO2 to enhance the properties of RC owing to the ability of nano-SiO2 to interact with the RC matrix at very low concentrations (2 wt%).

Keywords

Composites Nano-SiO2 Biodegradable polymer Regenerated cellulose Interaction 

Notes

Acknowledgments

This work was supported by both the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) [No. 2017R1A2B4011234].

References

  1. Ashok B, Reddy KO, Madhukar K, Cai J, Zhang L, Rajulu AV (2015) Properties of cellulose/Thespesia lampas short fibers bio-composite films. Carbohydr Polym 127:110–115CrossRefGoogle Scholar
  2. Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis GP (2005) Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur Polym J 41:1965–1978CrossRefGoogle Scholar
  3. Boissiere C, Kummel M, Persin M, Larbot A, Prouzet E (2001) Spherical MSU-mesoporous silica particles tuned for HPLC. Adv Funct Mater 11:129–135CrossRefGoogle Scholar
  4. Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007a) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579CrossRefGoogle Scholar
  5. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007b) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRefGoogle Scholar
  6. Cerruti P, Ambrogi V, Postiglione A, Rychly J, Matisová-Rychla L, Carfagna C (2008) Morphological and thermal properties of cellulose–montmorillonite nanocomposites. Biomacromolecules 9:3004–3013CrossRefGoogle Scholar
  7. Dai TY, Wang HJ, Cao Y (2015) Preparation, characterization and application of polyaniline/epoxide polysiloxane composite films. Chin J Polym Sci 33:732–742CrossRefGoogle Scholar
  8. Delhom CD, White-Ghoorahoo LA, Pang SS (2010) Development and characterization of cellulose/clay nanocomposites. Compos B Eng 41:475–481CrossRefGoogle Scholar
  9. Farahani MF, Bedane AH, Pan Y, Xiao H, Eic M, Chibante F (2015) Cellulose/nanoclay composite films with high water vapor resistance and mechanical strength. Cellulose 22:3941–3953CrossRefGoogle Scholar
  10. Gennadios A, Weller CL, Goodings CH (1994) Measurement errors in water vapor permeability of high permeable hydrophilic edible films. J Food Eng 21:395–409CrossRefGoogle Scholar
  11. Grun M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9:254–257CrossRefGoogle Scholar
  12. Han D, Yan L, Chen W, Li W, Bangal PR (2011) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83:966–972CrossRefGoogle Scholar
  13. Jayaramudu J, Reddy GSM, Varaprasad K, Sadiku ER, Ray SS, Rajulu AV (2013) Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Carbohydr Polym 93:622–627CrossRefGoogle Scholar
  14. Khalil HPS, Abdul AH, Bhat AF, Ireana Y (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRefGoogle Scholar
  15. Kim DH, Park SY, Kim J, Park M (2010) Preparation and properties of the single-walled carbon nanotube/cellulose nanocomposites using N-methylmorpholine-N-oxide monohydrate. J Appl Polym Sci 117:3588–3594Google Scholar
  16. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  17. Lagaron JM, Catalá R, Gavara R (2004) Structural characteristics defining high barrier polymeric materials. Mater Sci Technol 20:1–7CrossRefGoogle Scholar
  18. Lai SM, Hsieh YT (2016) Preparation and properties of polylactic acid (PLA)/silica nanocomposites. J Macromol Sci Part B 55:211–228CrossRefGoogle Scholar
  19. Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613CrossRefGoogle Scholar
  20. Mahmoudian S, Wahit MU, Ismail AF, Yussuf AA (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydr Polym 88:1251–1257CrossRefGoogle Scholar
  21. Mohammad S, Mat UW, Shaya M, Nurbaiti AH (2013) Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid. Mater Chem Phys 141:936–943CrossRefGoogle Scholar
  22. Mohammad S, Mat UW, Abdirahman AY, Al-Saleh MA, Wong TW (2014) Characterization of bio regenerated cellulose/sepiolite nanocomposite films prepared via ionic liquid. Polym Test 33:121–130CrossRefGoogle Scholar
  23. Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  24. Nadhan AV, Rajulu AV, Li R, Cai J, Zhang L (2012) Properties of waste silk short fiber/cellulose green composite films. J Compos Mater 46:123–127CrossRefGoogle Scholar
  25. Pasternack RM, Sandrine RA, Yves JC (2008) Attachment of 3-(aminopropyl) triethoxysilane on silicon oxide surfaces: dependence on solution temperature. Langmuir 24:12963–12971CrossRefGoogle Scholar
  26. Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184CrossRefGoogle Scholar
  27. Qi H, Liu J, Gao S, Mader E (2013) Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. J Mater Chem A 1:2161CrossRefGoogle Scholar
  28. Rahatekar SS, Rasheed A, Jain R, Zammarano M, Koziol KK, Windle AH, Gilman JW, Kumar S (2009) Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 50:4577–4583CrossRefGoogle Scholar
  29. Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRefGoogle Scholar
  30. Reddy JP, Rhim JW (2014) Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr Polym 110:480–488CrossRefGoogle Scholar
  31. Rhim JW (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86:691–699CrossRefGoogle Scholar
  32. Rhim JW, Wang LF (2013) Mechanical and water barrier properties of agar/-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr Polym 96:71–81CrossRefGoogle Scholar
  33. Saravanan S, Akshay Gowda KM, Ramamurthy PC, Giridhar M (2016) Influence of mesoporous silica and butyral content on the mechanical, water absorption, and permeability properties of in situ synthesized silica/PVB nanocomposite films. Polym Plast Technol Eng 55:1220–1230CrossRefGoogle Scholar
  34. Soheilmoghaddam M, Wahit MU, Whye WT, Akos NI, Pour RH, Yussuf AA (2014) Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent. Carbohydr Polym 106:326–334CrossRefGoogle Scholar
  35. Song H, Zheng L (2013) Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties. Cellulose 20:1737–1746CrossRefGoogle Scholar
  36. Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52:426–442CrossRefGoogle Scholar
  37. Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) High-performance nanocatalysts for single-step hydrogenations. Acc Chem Res 36:20–30CrossRefGoogle Scholar
  38. Tsioptsias C, Panayiotou C (2008) Preparation of cellulose–nanohydroxyapatite composite scaffolds from ionic liquid solutions. Carbohydr Polym 74:99–105CrossRefGoogle Scholar
  39. Vladimirov V, Betchev C, Vassiliou A, Papageorgiou G, Bikiaris D (2006) Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Compos Sci Technol 66:2935–2944CrossRefGoogle Scholar
  40. Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen J (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48:1688–1694CrossRefGoogle Scholar
  41. Yang Q, Qi H, Lue A, Hu K, Cheng G, Zhang L (2011) Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohydr Polym 83:1185–1191CrossRefGoogle Scholar
  42. Zha J, Lu X, Xin Z (2015) A rational design of double layer mesoporous polysiloxane coatings for broadband antireflection. J Sol Gel Sci Technol 74:677–684CrossRefGoogle Scholar
  43. Zhang H, Guo L, Shao H, Hu X (2006) Nano-carbon black filled lyocell fiber as a precursor for carbon fiber. J Appl Polym Sci 99:65–74CrossRefGoogle Scholar
  44. Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He JS (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704CrossRefGoogle Scholar
  45. Zhu A, Diao H, Rong Q, Cai A (2010) Preparation and properties of polylactide–silica nanocomposites. J Appl Polym Sci 116:2866–2873Google Scholar
  46. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jeevan Prasad Reddy
    • 1
  • A. Varada Rajulu
    • 2
  • Jong-Whan Rhim
    • 3
  • Jongchul Seo
    • 1
  1. 1.Department of PackagingYonsei UniversityWonjuRepublic of Korea
  2. 2.Centre for Composite Materials, International Research CentreKalasalingam UniversityKrishnan KovilIndia
  3. 3.Center for Humanities and Sciences, Bionanocomposite Research Center, Department of Food and NutritionKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations