, Volume 25, Issue 12, pp 7239–7259 | Cite as

Polyelectrolyte complexes of sulfoethyl cellulose–chitosan: effect of the structure on separation properties of multilayer membranes

  • Svetlana V. Kononova
  • Elena V. Kruchinina
  • Valentina A. Petrova
  • Yulija G. Baklagina
  • Kira A. Romashkova
  • Anton S. Orekhov
  • Vera V. Klechkovskaya
Original Paper


Membranes of a Simplex type with diffusion layers from sulfoethyl cellulose (SEC) and chitosan were investigated. Aromatic poly (amide imide) (PAI-O) synthesized by the low-temperature polycondensation from dicarboxyphenylphtalimide dichloranhydride and 4,4′-diaminodiphenyl ether was used for the support preparation of the composite membrane. Porous support films with an average pore size in the skin layer of 8 nm, were obtained from PAI-O under conditions of a phase-inversion process. Transport characteristics of membrane samples obtained were tested in processes of the aqueous ethanol pervaporation. All membranes are selective in the isolation of water from 96 wt% ethanol solution. In the case of the SEC layer at the top of composite membrane the selectivity is very high and a water concentration in the permeate reaches 100 wt%. The most selective membranes contained PEC based on counter-ions with the same degree of substitution of hydroxyl groups. The structure and morphological features of multilayer films studied by X-ray diffraction method, scanning electron microscopy and energy-dispersive X-ray microanalysis were discussed in view of a ratio of ionogenic groups of polyelectrolytes and a concentration of their solutions. The boundary of the counterion layers was visualized, as well as the polyelectrolyte complex (PEC). A formation of the PEC layer in the film obtained on a glass plate was shown to occur with the ordering of chitosan chains resulting both hydrated and anhydrous polymorphs, while the formation of the same film on the PAI-O substrate led only to the anhydrous form of chitosan.

Graphical abstract


Sulfoethyl cellulose Chitosan Polyelectrolyte complex Structure Poly(amide-imide) Membrane Pervaporation 



This work was financially supported by the Russian Science Foundation (Project #16-19-10536).


  1. Aderhold M, Apostel R, Behling R-D, Frigge G, Paul D, Peinemann K-V, Richau K, Scharnagel N, Schwarz H-H (1998) Process for the preparation of a polyelectrolyte composite membrane EP0587071Google Scholar
  2. Ageev EP, Vikhoreva GA, Galbraikh LS, Matushkina NN, Chaika EM, Jaminsky IV (1998) Preparation and properties of films based on chitosan and polyelectrolyte complexes of chitosan with carboxymethylchitin. Vysokomolek Soed A 40(7):1198–1204Google Scholar
  3. Baklagina YuG, Kononova SV, Petrova VA, Kruchinina EV, Nud’ga LA, Romanov DP, Klechkovskaya VV, Orekhov AS, Bogomazov AV, Arkhipov SN (2013) Study of polyelectrolyte complexes of chitosan and sulfoethyl cellulose. Crystallogr Rep 58(2):287–294CrossRefGoogle Scholar
  4. Baklagina YG, Klechkovskaya VV, Kononova SV, Petrova VA, Poshina DN, Orekhov AS, Skorik YA (2018) Polymorphic modifications of chitosan. Crystallogr Rep 63(3):307–317CrossRefGoogle Scholar
  5. Barck K, Butler MF (2005) Comparison of morphology and properties of polyelectrolyte complex particles formed from chitosan and polyanionic biopolymers. J Appl Polym Sci 98:1581–1593CrossRefGoogle Scholar
  6. Choudhari SK, Premakshi HG, Kariduraganavar MY (2016) Preparation and pervaporation performance of chitosan-poly(methacrylic acid) polyelectrolyte complex membranes for dehydration of 1,4-dioxane. Polym Eng Sci 56(6):715–724CrossRefGoogle Scholar
  7. Clasen C, Wilhelms T, Kulicke W-M (2006) Formation and characterization of chitosan membranes. Biomacromol 7:3210–3222CrossRefGoogle Scholar
  8. Dautzenberg H, Klohr E-A, Knop S, Koch W, Kulicke W-M, Schwarz H-H, Thielking H (2001) Symplex membrane. EP 1115475 A1Google Scholar
  9. Dubas ST, Schlenoff JB (1999) Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 32:8153–8160CrossRefGoogle Scholar
  10. Gusinskaya VA, Koton MM, Batrakova TV, Romashkova KA (1976) Poly(amide-imide)s based on symmetric and asymmetric dichloride-imide acids. Vysokomol Soed A 18:2681–2686Google Scholar
  11. Huang RYM, Pal R, Moon GY (2000) Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two-ply composite membranes supported by poly(vinylidene fluoride) porous membrane. J Membr Sci 167:275–289CrossRefGoogle Scholar
  12. Hudson SM, Smith C (1998) Polysaccharides: chitin and chitosan—chemistry and technology of their use as structural materials. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 96–118CrossRefGoogle Scholar
  13. Iwatsubo T, Kusumocahyo SP, Shinbo T (2002) Water/ethanol pervaporation performance of asymmetric polyelectrolyte complex membrane constructed by the diffusion of poly(acrylic acid) in chitosan membrane. J Appl Polym Sci 86:265–271CrossRefGoogle Scholar
  14. Karakane H, Tsuyumoto M, Maeda Y, Honda Z (1991) Separation of water–ethanol by pervaporation through poly-ion complex composite membrane. J Appl Polym Sci 42:3229–3239CrossRefGoogle Scholar
  15. Kim S-G, Lee K-S, Lee K-H (2007) Pervaporation separation of sodium alginate/chitosan polyelectrolyte complex composite membranes for the separation of water/alcohol mixtures: characterization of the permeation behavior with molecular modeling techniques. J Appl Polym Sci 103:2634–2641CrossRefGoogle Scholar
  16. Kim S-G, Ahn HR, Lee K-H (2009) Pervaporation characteristics of polyelectrolyte complex gel membranes based on two anionic polysaccharides having a chelating structure. Curr Appl Phys 9:42–46CrossRefGoogle Scholar
  17. Knop S, Thielking H, Kulicke W-M (2000a) Simplex membranes of chitosan and sulphoethylcellulose. Adv Chit Sci IV:104–111Google Scholar
  18. Knop S, Thielking H, Kulicke W-M (2000b) Simplex membranes of sulphoethylcellulose and poly(diallydimethylammonium chloride) for the pervaporation of water-alcohol mixtures. J Appl Polym Sci 77:3169–3177CrossRefGoogle Scholar
  19. Kononova SV, Kuznetsov YuP, Apostel R, Paul D, Schwarz H-H (1996) New polymer multilayer pervaporation membrane. Angewandte Macromoleculare Chemie 237(4122):45–53CrossRefGoogle Scholar
  20. Kononova SV, Kuznetsov YuP, Romashkova KA, Kudryavtsev VV (2006) Interrelation between preparation conditions and structure of asymmetric membranes based on poly((diphenyl oxide amido)-N-phenylphthalimide). Polym Sci A 48(9):967–973CrossRefGoogle Scholar
  21. Kononova SV, Kruchinina EV, Romashkova KA, Potokin IL, Shchukarev AV, Kudryavtsev VV (2010) Phase-inversion gradient-porous films on the basis of polyamidoimides derived from phthalimidobenzenedicarbonyl dichloride and various diamines. Russ J Gen Chem 80(10):1977–1985CrossRefGoogle Scholar
  22. Kononova SV, Kremnev RV, Baklagina YuG, Volchek BZ, Vlasova EN, Shabsels BM, Romashkova KA, Romanov DP, Arkhipov SN, Bogomazov AV, Uchytil P (2011) Interrelation between the structural and transport properties of pervaporation membranes with diffusion layers based on poly-γ-benzyl-l-glutamate. Crystallogr Rep 56(3):502–507CrossRefGoogle Scholar
  23. Kononova SV, Gubanova GN, Romashkova KA, Korytkova EN, Timpu D (2012) Polyamide-imide membranes of various morphology-features of nano-scale elements of structure. In: Nalladega Vijay (ed) Scanning probe microscopy-physical property characterization at nanoscale. INTECH, Croatia, pp 81–102Google Scholar
  24. Kononova SV, Kremnev RV, Suvorova EI, Baklagina YG, Volchek BZ, Uchytil P, Shabsels BM, Romashkova KA, Setnickova K, Reznickova J (2015) Pervaporation membranes with poly(γ-benzyl-L-glutamate) selective layers for separation of toluene–n-heptane mixtures. J Membr Sci 477:14–24CrossRefGoogle Scholar
  25. Kononova SV, Kruchinina EV, Petrova VA, Baklagina YG, Romashkova KA, Orekhov AS, Klechkovskaya VV, Skorik YA (2017) Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose on a microporous support based on poly(diphenylsulfone-N-phenylphthalimide). Molecules 22(12):2227CrossRefGoogle Scholar
  26. Krajewska B (2005) Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol 41(3):305–312CrossRefGoogle Scholar
  27. Kulicke W-M, Nottelmann H (1987) Rheological and swelling studies of synthetic polimer-networks in comparison to biopolymer-networks. Polym Mater Sci Eng 57:265–269Google Scholar
  28. Kuznetsov YuP, Kruchinina EV, Nud’ga LA, Petrova VA, Bochek AM, Shishkina GV, Matveeva NA (2003) Dehydration of organic solvents by evaporation through membranes based on polyelectrolyte complexes. Russ J Appl Chem 76(11):1807–1812CrossRefGoogle Scholar
  29. Lukas J, Richau K, Schwarz H-H, Paul D (1995) Surface characterization of polyelectrolyte complex membranes based on sodium cellulose sulfate and poly(dimethyldiallylammonium chloride). J Membr Sci 106:281–288CrossRefGoogle Scholar
  30. Lukas J, Richau K, Schwarz H-H, Paul D (1997) Surface characterization of polyelectrolyte complex membranes based on sodium cellulose sulfate and various cationic components. J Membr Sci 131:39–47CrossRefGoogle Scholar
  31. Ma XH, Xu ZL, Ji CQ, Wei YM, Yang H (2011) Characterization, separation performance, and model analysis of STPP-chitosan/PAN polyelectrolyte complex membranes. J Appl Polym Sci 120:1017–1026CrossRefGoogle Scholar
  32. Maeda Y, Tsuyumoto M, Karakane H, Tsugaya H (1991) Separation of water-ethanol mixture by pervaporation through hydrolyzed polyacrylonitrile hollow fiber membranes. Polym J 23(5):501–511CrossRefGoogle Scholar
  33. Majeti NV, Kumar R (2000) A review of chitin and chitosan applications. Rev React Funct Polym 46:1–27CrossRefGoogle Scholar
  34. Moon GY, Pal R, Huang RYM (1999) Novel two-ply composite membranes of chitosan and sodium alginate for the pervaporation dehydration of isopropanol and ethanol. J Membr Sci 156:17–27CrossRefGoogle Scholar
  35. Nam SY, Lee YM (1997) Pervaporation and properties of chitosan-poly(acrylic acid) complex membranes. J Membr Sci 135:161–171CrossRefGoogle Scholar
  36. Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T (1984) A new polymorph of chitosan. Macromolecules 17:973–975CrossRefGoogle Scholar
  37. Orekhov AS, Klechkovskaya VV, Kononova SV (2017) Low-voltage scanning electron microscopy of multilayer polymer systems. Crystallogr Rep 62(5):710–715CrossRefGoogle Scholar
  38. Peniche-Covas C, Arguelles-Monal W, San Roman J (1995) Sorption and desorption of water vapour by membranes of the polyelectrolyte complex of chitosan and carboxymethyl cellulose. Polym Int 38(1):45–52CrossRefGoogle Scholar
  39. Petrova VA, Orekhov AS, Chernyakov DD, Baklagina YuG, Romanov DP, Kononova SV, Volod’ko AV, Ermak IM, Klechkovskaya VV, Skorik YuA (2016) Preparation and analysis of multilayer composites based on polyelectrolyte complexes. Crystallogr Rep 61(6):946–954CrossRefGoogle Scholar
  40. Plisko EA, Nud’ga LA (1967) Determination of molecular waight of sulfoethyl ether of cellulose by osmometry. Vysokomol Soed B 9(11):825–827Google Scholar
  41. Pogodina NV, Pavlov GM, Bushin SV, Mel’nikov AB, Lysenko YB, Nud’ga LA, Marsheva VN, Marchenko GN, Tsvetkov VN (1986) Conformational characteristics of chitosan molecules as demonstrated by diffusion-sedimentation analysis and viscometry. Polym Sci USSR 28:251–259CrossRefGoogle Scholar
  42. Richau K, Schwarz H-H, Apostel R, Paul D (1996) Dehydration of organics by pervaporation with polyelectrolyte complex membranes: some considerations concerning the separation mechanism. J Membr Sci 113:31–41CrossRefGoogle Scholar
  43. Sæther HV, Holme HK, Maurstad G, Smidsrød O, Stokke BT (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Pol 74:813–821CrossRefGoogle Scholar
  44. Saito H, Tabeta R, Ogawa K (1987) High-resolution solid-state carbon-13 NMR study of chitosan and its salts with acids: conformational characterization of polymorphs and helical structures as viewed from the conformation-dependent carbon-13 chemical shifts. Macromolecules 20:2424–2430CrossRefGoogle Scholar
  45. Scharnagl N, Peinemann KV, Wenzlaff A, Schwarz H-H, Behling RD (1996) Dehydration of organic compounds with SYMPLEX composite membranes. J Membr Sci 113:1–5CrossRefGoogle Scholar
  46. Schwarz H-H, Malsch G (2005) Polyelectrolyte membranes for aromatic–aliphatic hydrocarbon separation by pervaporation. J Membr Sci 47(1–2):143–152CrossRefGoogle Scholar
  47. Schwarz H-H, Richau K, Jacob E-M, Paul D, Hahn M, Wagenknecht W, Schroter I, Radke N, Rodicker H, Oschatz E, Schubert H (1991) Verwendung von symplexmembranen fur die pervaporation. DD 292846 A5Google Scholar
  48. Schwarz H-H, Richau K, Paul D (1991b) Membranes from polyelectrolyte complexes. Polym Bull 25(1):95–100Google Scholar
  49. Schwarz H-H, Richau K, Apostel R (1997) The combination of ionic surfactants with polyelectrolytes a new material for membranes. Macromol Symp Dresden 126:95–104CrossRefGoogle Scholar
  50. Schwarz H-H, Lukas J, Richau K (2003) Surface and permeability properties from polyelectrolyte complexes and polyelectrolyte surfactant complexes. J Membr Sci 218:1–9CrossRefGoogle Scholar
  51. Shieh JJ, Huang RYM (1997) Pervaporation with chitosan membranes. II. Blend membranes of chitosan and polyacrylic acid and comparison of homogeneous and composite membrane based on polyelectrolyte complexes of chitosan and polyacrylic acid for the separation of ethanol–water mixtures. J Membr Sci 127:185–202CrossRefGoogle Scholar
  52. Skorikova EE, Kalyuzhnaya RI, Vikhoreva GA, Galbraikh LS, Kotova SL, Ageev EP, Zezin AB, Kabanov VA (1996) Properties of inter-polyelectrolyte complexes of chitosan and poly(acrylic acid). Polym Sci A 38(1):49–53Google Scholar
  53. Smirnova NN, Fedotov YuA (2002) Polyelectrolyte complexes - materials for separation membranes. Electrodialysis, pervaporation and gas separation membranes. Kriticheskie tekhnologii. Membrany 14:60–67Google Scholar
  54. Suvorova EI, Buffat PA, Kremnev RV, Kononova SV (2012) Structure of the skin-layer in asymmetric micro-membranes formed from poly(amide-imide)s. In: EMC2012, 15th European Microscopy Congress, Manchester, UK 0179Google Scholar
  55. Thielking H, Klohr E-A, Koch W, Dautzenberg H., Schwarz H-H, Knop S, Kulicke WM (2000a) Simplex membrane, for separation of water from organic materials, contains at least one sulfoalkyl group containing cellulose ether polyanion as anionic component. DE 19837673 A1Google Scholar
  56. Thielking H, Klohr E-A, Koch W, Schwarz H-H, Knop S, Kulicke W-M, Dautzenberg H (2000b) Symplexmembran. WO 2000010694 A1Google Scholar
  57. Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. Adv Polym Sci 166:113–171CrossRefGoogle Scholar
  58. van Ackern F, Krasemann L, Tieke B (1998) Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes. Thin Solid Films 327–329:762–766CrossRefGoogle Scholar
  59. Vårum KM, Anthonsen MW, Grasdalen H, Smidsrød O (1991) Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohydr Res 211:17–23CrossRefGoogle Scholar
  60. Wang HF, Li WJ, Lu YH, Wang ZL (1997) Studies on chitosan and poly(acrylic acid) interpolymer complex. 1. Preparation, structure, pH-sensitivity, and salt sensitivity of complex-forming poly(acrylic acid): chitosan semi-interpenetrating polymer network. Appl Polym Sci 65:1445–1450CrossRefGoogle Scholar
  61. Wang X-S, An Q-F, Zhao Q, Lee KR, Qian JW, Gao CJ (2012) Preparation and pervaporation characteristics of novel polyelectrolyte complex membranes containing dual anionic groups. J Membr Sci 415–416:145–152CrossRefGoogle Scholar
  62. Wang X-S, An Q-F, Zhao Q, Lee KR, Qian JW, Gao CJ (2013) Homogenous polyelectrolyte complex membranes incorporated with strong ion-pairs with high pervaporation performance for dehydration of ethanol. J Membr Sci 435:71–79CrossRefGoogle Scholar
  63. Wang X-S, An Q-F, Liu T, Zhao Q, Hung W-S, Lee K-R, Gao C-J (2014) Novel polyelectrolyte complex membranes containing free sulfate groups with improved pervaporation dehydration of ethanol. J Membr Sci 452:73–81CrossRefGoogle Scholar
  64. Wilhelms TA (2005) Neuartige hydrophile makromolekulare Netzwerke. Dissertation, University of HamburgGoogle Scholar
  65. Yao KD, Peng T, Feng HB, He YY (1994) Swelling kinetics and release characteristic of cross-linked chitosan polyether polymer network (semi-IPN) hydrogels. J Polym Sci 32:1213–1223CrossRefGoogle Scholar
  66. Zhang Y, Rhim JW, Feng XS (2013) Improving the stability of layer-by-layer self-assembled membranes for dehydration of alcohol and diol. J Membr Sci 444:22–31CrossRefGoogle Scholar
  67. Zhao Q, Qian J, An Q, Gao C, Gui Z, Jin H (2009) Synthesis and haracterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogenous membranes. J Membr Sci 333:68–78CrossRefGoogle Scholar
  68. Zhao Q, An QF, Ji Y, Qian J, Gao C (2011) Review. Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. J Membr Sci 379:19–45CrossRefGoogle Scholar
  69. Zhao CH, Wu H, Li XS, Pan FS, Li YF, Zhao J, Jiang ZY, Zhang P, Cao XZ, Wang BY (2013) High performance composite membranes with a polycarbophil calcium transition layer for pervaporation dehydration of ethanol. J Membr Sci 429:409–417CrossRefGoogle Scholar
  70. Zhu Z (2006) Development of self-assembled polyelectrolyte membranes for pervaporation applications. Ph.D. Dissertation, University of Waterloo, Ontario, CanadaGoogle Scholar
  71. Zhu Zh, Feng X, Al Penlidis (2006) A Self-assembled nano-structured polyelectrolyte composite membranes for pervaporation. Mater Sci Eng, C 26:1–8CrossRefGoogle Scholar
  72. Zhu Zh, Feng X, Al Penlidis (2007) Layer-by-layer self-assembled polyelectrolyte membranes for solvent dehydration by pervaporation. Mater Sci Eng, C 27:612–619CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Macromolecular Compounds, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of SciencesMoscowRussia
  3. 3.NRC “Kurchatov Institute”MoscowRussia

Personalised recommendations