Advertisement

Cellulose

, Volume 25, Issue 10, pp 5553–5568 | Cite as

Breaking down cellulose fibrils with a mid-infrared laser

  • Dominik Domin
  • Viet Hoang Man
  • Nguyen-Thi Van-Oanh
  • Junmei Wang
  • Takayasu Kawasaki
  • Philippe Derreumaux
  • Phuong H. Nguyen
Original Paper
  • 50 Downloads

Abstract

Abstract

A novel process for the separation of crystalline cellulose in water into single polysaccharide strands is proposed that does not require high temperatures or other chemical reactants. We have modeled the behavior of a 36-strand cellulose \(\hbox {I}\beta\) crystalline bundle when subjected to picosecond mid-infrared laser pulses using all-atom non-equilibrium molecular dynamics simulations. We show that mid-infrared laser pulses that induce resonance deformations in the C–O–H angles of the hydroxyl groups that are involved in the hydrogen bonding network of cellulose, rapidly cause the cellulose bundles to dissociate into single strands solvated by the water. The laser pulses selectively disrupt intra- and inter-chain hydrogen bonds that maintain the polysaccharide strands in sheets and bundles, causing cellulose to dissolve into single strands whose end-to-end lengths remain similar to those in the original cellulose crystalline bundle. This proof-of-concept work provides guidance for experiments that may provide insight into the mechanism of cellulase enzymes whose improvement could lead to increased production of ethanol from cellulose, and possibly spur the development of new nanomaterial engineering techniques.

Graphical Abstract

Keywords

Laser Cellulose Non-equilibrium simulation Ionic liquid 

Notes

Acknowledgments

This work has been supported by CNRS, the Grant ANR-11-LABEX-0011-01, the National Science Foundation (NSF) USA via Grants SI2-1148144 and 154941, the National Institutes of Health (NIH) USA via Grants R01-GM079383 and R21- GM097617, and the IDRIS, CINES, TGCC centers for providing computer facilities (Grants x2015077198, A0020710174 and A0030707721).

References

  1. Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16(4):535.  https://doi.org/10.1007/s10570-009-9327-8 CrossRefGoogle Scholar
  2. Agarwal V, Huber GW, Conner WC, Auerbach SM (2011) Simulating infrared spectra and hydrogen bonding in cellulose i\(\beta\) at elevated temperatures. J Chem Phys 135(13):134506.  https://doi.org/10.1063/1.3646306 CrossRefGoogle Scholar
  3. Backus EHG, Nguyen PH, Botan V, Pfister R, Moretto A, Crisma M, Toniolo C, Stock G, Hamm P (2008) Energy transport in peptide helices: a comparison between high- and low-energy excitations. J Phys Chem B 112:9091CrossRefGoogle Scholar
  4. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Intermolecular forces. Reidel, DordrechtGoogle Scholar
  5. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684CrossRefGoogle Scholar
  6. Bergenstrahle M, Berglund L, Mazeau K (2007) Thermal response in crystalline i cellulose: a molecular dynamics study. J Phys Chem B 111:9138CrossRefGoogle Scholar
  7. Botan VV, Backus EHG, Pfister R, Moretto A, Crisma M, Toniolo C, Nguyen PH, Stock G, Hamm P (2007) Energy transport in peptide helices. Proc Natl Acad Sci U S A 104:12749CrossRefGoogle Scholar
  8. Chen P, Nishiyama Y, Putaux JL, Mazeau K (2014) Diversity of potential hydrogen bonds in cellulose i revealed by molecular dynamics simulation. Cellulose 21:897CrossRefGoogle Scholar
  9. Cho HM, Gross AS, Chu J (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133:14033CrossRefGoogle Scholar
  10. Chundawat SPS, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133(29):11163.  https://doi.org/10.1021/ja2011115 PMID: 21661764CrossRefGoogle Scholar
  11. Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122.  https://doi.org/10.1016/j.pbi.2014.11.001, http://www.sciencedirect.com/science/article/pii/S1369526614001538. SI: Cell biologyCrossRefGoogle Scholar
  12. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089CrossRefGoogle Scholar
  13. Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597CrossRefGoogle Scholar
  14. Glass DC, Moritsugu K, Cheng X, Smith JC (2012) Reach coarse-grained simulation of a cellulose fiber. Biomacromolecules 13:2634CrossRefGoogle Scholar
  15. Gomes TC, Skaf MS (2012) Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33:1338CrossRefGoogle Scholar
  16. Gross AS, Chu JW (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:1333CrossRefGoogle Scholar
  17. Gross AS, Bell AT, Chu JW (2011) Thermodynamics of cellulose solvation in water and the ionic liquid 1-butyl-3-methylimidazolim chloride. J Phys Chem B 115(46):13433.  https://doi.org/10.1021/jp202415v PMID: 21950594CrossRefGoogle Scholar
  18. Gupta KM, Jiang J (2015) Cellulose dissolution and regeneration in ionic liquids: a computational perspective. Chem Eng Sci 121:180.  https://doi.org/10.1016/j.ces.2014.07.025.2013 Danckwerts special issue on molecular modelling in chemical engineeringCrossRefGoogle Scholar
  19. Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell ADJ (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543CrossRefGoogle Scholar
  20. Guvench O, Hatcher ER, Venable RM, Pastor RW, Mackerell AJ (2009) Charmm additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353CrossRefGoogle Scholar
  21. Higgins H, Stewart C, Harrington K (1961) Infrared spectra of cellulose and related polysaccharides. J Polym Sci 51(155):59.  https://doi.org/10.1002/pol.1961.1205115505, https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1961.1205115505 CrossRefGoogle Scholar
  22. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804.  https://doi.org/10.1126/science.1137016. http://science.sciencemag.org/content/315/5813/804 CrossRefGoogle Scholar
  23. Hishikawa Y, Togawa E, Kondo T (2017) Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized ftir spectra. ACS Omega 2(4):1469.  https://doi.org/10.1021/acsomega.6b00364 CrossRefGoogle Scholar
  24. Jisuke H, Akinori S, Junji O, Sadayoshi W (1975) The confirmation of existences of cellulose iiii, iiiii, ivi, and ivii by the x-ray method. J Polym Sci Polym Lett Edit 13(1):23.  https://doi.org/10.1002/pol.1975.130130104, https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1975.130130104 CrossRefGoogle Scholar
  25. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926CrossRefGoogle Scholar
  26. Kawasaki T, Fujioka J, Imai T, Tsukiyama K (2012) Effect of mid-infrared free-electron laser irradiation on refolding of amyloid-like fibrils of lysozyme into native form. Protein J 31(8):710 http://view.ncbi.nlm.nih.gov/pubmed/23054332 CrossRefGoogle Scholar
  27. Kawasaki T, Fujioka J, Imai T, Torigoe K, Tsukiyama K (2014a) Mid-infrared free-electron laser tuned to the amide I band for converting insoluble amyloid-like protein fibrils into the soluble monomeric form. Lasers Med Sci 29(5):1701.  https://doi.org/10.1007/s10103-014-1577-5 CrossRefGoogle Scholar
  28. Kawasaki T, Imai T, Tsukiyama K (2014b) Use of a mid-infrared free-electron laser (MIR-FEL) for dissociation of the amyloid fibril aggregates of a peptide. J Anal Sci Methods Instrum 04(01):9.  https://doi.org/10.4236/jasmi.2014.41002 Google Scholar
  29. Kawasaki T, Yaji T, Imai T, Ohta T, Tsukiyama K (2014c) Synchrotron-infrared microscopy analysis of amyloid fibrils irradiated by mid-infrared free-electron laser. Am J Anal Chem 05(06):384.  https://doi.org/10.4236/ajac.2014.56047 CrossRefGoogle Scholar
  30. Kawasaki T, Yaji T, Ohta T, Tsukiyama K (2016) IUCr, application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein. J Synchrotron Radiat 23(1):152.  https://doi.org/10.1107/yi5014 CrossRefGoogle Scholar
  31. Kondo T (1997) The assignment of ir absorption bands due to free hydroxyl groups in cellulose. Cellulose 4(4):281.  https://doi.org/10.1023/A:1018448109214 CrossRefGoogle Scholar
  32. Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose ii from a neutron fiber diffraction analysis. J Am Chem Soc 121(43):9940.  https://doi.org/10.1021/ja9916254 CrossRefGoogle Scholar
  33. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose ii at 1 resolution. Biomacromolecules 2(2):410.  https://doi.org/10.1021/bm005612q PMID: 11749200CrossRefGoogle Scholar
  34. Levine SE, Fox JM, Blanch HW, Clark DS (2010) A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 107(1):37.  https://doi.org/10.1002/bit.22789 CrossRefGoogle Scholar
  35. Lindahl E, Hess B, van der Spoel D (2001) Gromacs 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod 7:306CrossRefGoogle Scholar
  36. Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76CrossRefGoogle Scholar
  37. Luo J, Fang Z, Smith RL Jr (2013) Ultrasound-enhanced conversion of biomass to biofuels. Progress Energy Combust Sci 41:56CrossRefGoogle Scholar
  38. Man VH, Pan F, Sagui C, Roland C (2016a) Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse. J Chem Phys 144(14):145101+.  https://doi.org/10.1063/1.4945340 CrossRefGoogle Scholar
  39. Man VH, Van-Oanh NT, Derreumaux P, Li MS, Roland C, Sagui C, Nguyen PH (2016b) Picosecond infrared laser-induced all-atom nonequilibrium molecular dynamics simulation of dissociation of viruses. Phys Chem Chem Phys.  https://doi.org/10.1039/c5cp07711g Google Scholar
  40. Marchessault R, Liang C (1960) Infrared spectra of crystalline polysaccharides. III. Mercerized cellulose. J Polym Sci 43(141):71.  https://doi.org/10.1002/pol.1960.1204314107, https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1960.1204314107 Google Scholar
  41. Marechal Y (2011) The molecular structure of liquid water delivered by absorption spectroscopy in the whole ir region completed with thermodynamics data. J Mol Struct 1004(1):146.  https://doi.org/10.1016/j.molstruc.2011.07.054, http://www.sciencedirect.com/science/article/pii/S0022286011006247 CrossRefGoogle Scholar
  42. Marechal Y, Chanzy H (2000) The hydrogen bond network in i\(\beta\) cellulose as observed by infrared spectrometry. J Mol Phys 523:183Google Scholar
  43. Matthews JF, Skopec CE, Mason P, Zuccato P, Torget R, Sugiyama J, Himmel M, Brady J (2006a) Computer simulation studies of microcrystalline cellulose i\(\beta\). Carbohydr Res 341:138CrossRefGoogle Scholar
  44. Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006b) Computer simulation studies of microcrystalline cellulose i. Carbohydr Res 341(1):138.  https://doi.org/10.1016/j.carres.2005.09.028 CrossRefGoogle Scholar
  45. Matthews JF, Bergenstrahle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011a) High-temperature behavior of cellulose i. J Phys Chem B 115:2155CrossRefGoogle Scholar
  46. Matthews JF, Himmel ME, Crowley MF (2011b) Conversion of cellulose i\(\alpha\) to i\(\beta\) via a high temperature intermediate (i-ht) and other cellulose phase transformations. Cellulose 19:297CrossRefGoogle Scholar
  47. Matthews JF, Beckham GT, Bergenstrahle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose i\(\beta\) simulations with three carbohydrate force fields. J Chem Theory Comput 8:735CrossRefGoogle Scholar
  48. Max J, Chapados C (2009) Isotope effects in liquid water by infrared spectroscopy. III. h2o and d2o spectra from 6000to0cm ’1. J Chem Phys 131(18):184505.  https://doi.org/10.1063/1.3258646 CrossRefGoogle Scholar
  49. Mazeau K (2005) Structural micro-heterogeneities of crystalline i\(\beta\)-cellulose. Cellulose 12:339CrossRefGoogle Scholar
  50. Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19(1):32.  https://doi.org/10.1016/j.cocis.2013.12.001, http://www.sciencedirect.com/science/article/pii/S1359029413001350 CrossRefGoogle Scholar
  51. Mikkola JP, Kirilin A, Tuuf JC, Pranovich A, Holmbom B, Kustov LM, Murzin DY, Salmi T (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem 9:1229CrossRefGoogle Scholar
  52. Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4(1):41.  https://doi.org/10.1186/1754-6834-4-41 CrossRefGoogle Scholar
  53. Nelson M, O’Connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. part i. spectra of lattice types i, ii, iii and of amorphous cellulose. J Appl Polym Sci 8(3):1311.  https://doi.org/10.1002/app.1964.070080322. https://onlinelibrary.wiley.com/doi/abs/10.1002/app.1964.070080322
  54. Nelson M, O’Connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. part ii. a new infrared ratio for estimation of crystallinity in celluloses i and ii. J Appl Polym Sci 8(3):1325.  https://doi.org/10.1002/app.1964.070080323. https://onlinelibrary.wiley.com/doi/abs/10.1002/app.1964.070080323
  55. Nguyen P, Stock G (2006) Nonequilibrium molecular dynamics simulation of a photoswitchable peptide. Chem Phys 323:36CrossRefGoogle Scholar
  56. Nguyen P, Gorbunov RD, Stock G (2006) Photoinduced conformational dynamics of a photoswitchable peptide: a nonequilibrium molecular dynamics simulation study. Biophys J 91:1224CrossRefGoogle Scholar
  57. Nguyen PH, Park SY, Stock G (2010) Nonequilibrium molecular dynamics simulation of the energy transport through a peptide helix. J Chem Phys 132:025102CrossRefGoogle Scholar
  58. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen bonding system in cellulose i(beta) from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124:9074CrossRefGoogle Scholar
  59. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose i(alpha) from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 125:14300CrossRefGoogle Scholar
  60. Oehme DP, Downton MT, Doblin MS, Wagner J, Gidley MJ, Bacic A (2015) Unique aspects of the structure and dynamics of elementary i\(\beta\) cellulose microfibrils revealed by computational simulations. Plant Physiol 168:3CrossRefGoogle Scholar
  61. Park SY, Nguyen PH, Stock G (2009) Molecular dynamics simulation of cooling: Heat transfer from a photoexcited peptide to the solvent. J Chem Phys 131:184503CrossRefGoogle Scholar
  62. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115(3):1308.  https://doi.org/10.1021/cr500351c CrossRefGoogle Scholar
  63. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712CrossRefGoogle Scholar
  64. Poma AB, Chwastyk M, Cieplak M (2016) Coarse-grained model of the native cellulose i\(\alpha\)i and the transformation pathways to the i\(\beta\) allomorph. Cellulose 23:1573CrossRefGoogle Scholar
  65. Rabideau BD, Agarwal A, Ismail AE (2013) Observed mechanism for the breakup of small bundles of cellulose i\(\alpha\) and i\(\beta\) in ionic liquids from molecular dynamics simulations. J Phys Chem B 117:3469CrossRefGoogle Scholar
  66. Ryckaert JP, Cicotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327CrossRefGoogle Scholar
  67. Srinivas G, Cheng X, Smith JC (2014) Coarse-grain model for natural cellulose fibrils in explicit water. J Phys Chem B 118:3026CrossRefGoogle Scholar
  68. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974.  https://doi.org/10.1021/ja025790m CrossRefGoogle Scholar
  69. Tsuboi M (1957) Infrared spectrum and crystal structure of cellulose. J Polym Sci 25(109):159.  https://doi.org/10.1002/pol.1957.1202510904, https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1957.1202510904 CrossRefGoogle Scholar
  70. Van-Oanh NT, Falvo C, Calvo F, Lauvergnat D, Basire M, Gaigeot MP, Parneix P (2012) Improving anharmonic infrared spectra using semiclassically prepared molecular dynamics simulations. Phys Chem Chem Phys 14(7):2381.  https://doi.org/10.1039/c2cp23101h CrossRefGoogle Scholar
  71. Viet MH, Derreumaux P, Li MS, Roland C, Sagui C, Nguyen PH (2015a) Picosecond dissociation of amyloid fibrils with infrared laser: a nonequilibrium simulation study. J Chem Phys 143:155101CrossRefGoogle Scholar
  72. Viet MH, Truong PM, Derreumaux P, Li MS, Roland C, Sagui C, Nguyen PH (2015b) Picosecond melting of peptide nanotubes using an infrared laser: a nonequilibrium simulation study. Phys Chem Chem Phys 17:27275CrossRefGoogle Scholar
  73. Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519.  https://doi.org/10.1039/C2CS15311D CrossRefGoogle Scholar
  74. Warden AC, Little BA, Haritos VS (2011) A cellular automaton model of crystalline cellulose hydrolysis by cellulases. Biotechnol Biofuels 4(1):1.  https://doi.org/10.1186/1754-6834-4-39 CrossRefGoogle Scholar
  75. Wohlert J, Berglund LA (2011) A coarse-grained model for molecular dynamics simulations of native cellulose. J Chem Theory Comput 7:753CrossRefGoogle Scholar
  76. Zhang YHP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7(2):644.  https://doi.org/10.1021/bm050799c PMID: 16471942CrossRefGoogle Scholar
  77. Zhang Q, Bulone V, Agren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose i\(\beta\). Cellulose 18:207CrossRefGoogle Scholar
  78. Zhong L, Matthews JF, Hansen PI, Crowley MF, Cleary JM, Walker RC, Nimlos MR, Brooks C III, Adney WS, Himmel ME, Brady JW (2009) Computational simulations of the trchoderma reesei cellobiohydrolase i acting on microcrystalline cellulose i\(\beta\): The enzyme-substrate complex. Carbohydr Res 344:1984CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Dominik Domin
    • 1
  • Viet Hoang Man
    • 2
  • Nguyen-Thi Van-Oanh
    • 3
  • Junmei Wang
    • 2
  • Takayasu Kawasaki
    • 4
  • Philippe Derreumaux
    • 5
  • Phuong H. Nguyen
    • 5
  1. 1.Direction de la Recherche Fondamentale, Maison de la SimulationUSR 3441Gif-sur-Yvette CedexFrance
  2. 2.Department of Pharmaceutical Sciences, School of PharmacyUniversity of PittsburghPittsburghUSA
  3. 3.Laboratoire de Chimie Physique, CNRSUniversité Paris Sud, Université Paris-SaclayOrsay CedexFrance
  4. 4.IR Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research AdvancementTokyo University of ScienceNodaJapan
  5. 5.Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPCUniversité Denis Diderot, Paris Sorbonne CitéParisFrance

Personalised recommendations