Advertisement

Cellulose

, Volume 25, Issue 10, pp 5939–5950 | Cite as

Preparation and characterization of PES-xerogel nanocomposite ultra-filtration membrane

  • Mozhgan Shamsodin
  • Masoud Nasiri
  • Mostafa Fazli
Original Paper
  • 58 Downloads

Abstract

Organic–inorganic composite ultrafiltration membrane was prepared with Polyethersulphone and nano-xerogels. On the other hand, xerogels were also prepared by a simple method and were synthesized by a sol–gel process in which tetramethyl orthosilan and tetraethyl orthosilan were used as a precursor. Besides, high-energy planetary ball mill process was applied to make the nano-xerogels. Then, the final nano-xerogels were used to prepare ultrafiltration membrane. Modified membranes showed significant changes in physical and chemical properties. The presence of nano-xerogel in the membrane structure improved the hydrophilicity of the membrane. Pure water flux and the pore size of the membranes increased significantly. The result showed that BSA rejection of modified membranes is high. The membrane with 2 wt% of TEOS xerogel proved to have higher BSA rejection.

Graphical abstract

Keywords

Ultrafiltration Xerogel Membrane Water flux Nanocomposite 

List of symbols

A

Membrane area (m2)

AFM

Atomic force microscopy

BSA

Bovine serum albumin

Cp

Concentration of BSA in permeate (ppm)

Cf

Concentration of BSA in the feed (ppm)

DLS

Dynamic light scattering

DMF

Di methyl formamide

FT-IR

Fourier transform infrared spectroscopy

FE-SEM

Field emission electron microscopy

JW

Water flux

MWCO

Molecular weight cut off

PEG

Polyethylene glycol

PES

Polyether sulfone

PS

Poly sulfone

PZC

Point of zero charge

Ra

Average roughness

Rq

Root mean square of roughness

Rz

Difference between highest peak and lowest valley

SEM

Scanning Electron Microscopy

t

Time for collecting permeate (h)

ZP

Zeta potential

Notes

Acknowledgments

We would like to show our gratitude to Semnan University because of their support.

References

  1. Afonso M, Bórquez R (2002) Review of the treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processes—prospects of the ultrafiltration of wastewaters from the fish meal industry. Desalination 142:29–45.  https://doi.org/10.1016/S0011-9164(01)00423-4 CrossRefGoogle Scholar
  2. Afonso MD, Bórquez R (2012) Polyvinylchloride ultrafiltration membranes modified, pp 1–11.  https://doi.org/10.1061/(asce)ee.1943-7870.0000944
  3. Ananth A, Arthanareeswaran G, Mok YS (2014) Effects of in situ and ex situ formations of silica nanoparticles on polyethersulfone membranes. Polym Bull 71:2851–2861.  https://doi.org/10.1007/s00289-014-1226-y CrossRefGoogle Scholar
  4. Benito J, Sánchez M, Pena P, Rodríguez M (2007) Development of a new high porosity ceramic membrane for the treatment of bilge water. Desalination 214:91–101.  https://doi.org/10.1016/J.DESAL.2006.10.020 CrossRefGoogle Scholar
  5. Bian J, Wang ZJ, Lin HL et al (2017) Thermal and mechanical properties of polypropylene nanocomposites reinforced with nano-SiO2 functionalized graphene oxide. J Compos Part A Appl Sci Manuf.  https://doi.org/10.1016/j.compositesa.2017.01.002 Google Scholar
  6. Cab S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546.  https://doi.org/10.1039/tf9444000546 CrossRefGoogle Scholar
  7. Hassani S, Ghasemi A, Fazli M et al (2015) Cation-assisted adsorption of chlorophenols by nano-xerogels. Can J Chem Eng 93:2214–2221.  https://doi.org/10.1002/cjce.22341 CrossRefGoogle Scholar
  8. He J-P, Li H-M, Wang X-Y, Gao Y (2006) In situ preparation of poly(ethylene terephthalate)–SiO2 nanocomposites. Eur Polym J 42:1128–1134.  https://doi.org/10.1016/J.EURPOLYMJ.2005.11.002 CrossRefGoogle Scholar
  9. He T, Frank M, Mulder MHV, Wessling M (2008) Preparation and characterization of nanofiltration membranes by coating polyethersulfone hollow fibers with sulfonated poly(ether ether ketone) (SPEEK). J Membr Sci 307:62–72.  https://doi.org/10.1016/J.MEMSCI.2007.09.016 CrossRefGoogle Scholar
  10. Juangvanich N, Mauritz K (1998) Polyethersulfone-hybrid materials via in situ sol–gel reactions for tetraalkoxysilanes. J Appl Polym 1:1799–1810CrossRefGoogle Scholar
  11. Kim DS, Park HB, Rhim JW, Moo Lee Y (2004) Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membr Sci 240:37–48.  https://doi.org/10.1016/J.MEMSCI.2004.04.010 CrossRefGoogle Scholar
  12. Kuzmenko D, Arkhangelsky E, Belfer S et al (2005) Chemical cleaning of UF membranes fouled by BSA. Desalination 179:323–333.  https://doi.org/10.1016/j.desal.2004.11.078 CrossRefGoogle Scholar
  13. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95.  https://doi.org/10.1016/j.desal.2013.06.016 CrossRefGoogle Scholar
  14. Low ZX, Razmjou A, Wang K et al (2014) Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. J Membr Sci 460:9–17.  https://doi.org/10.1016/j.memsci.2014.02.026 CrossRefGoogle Scholar
  15. Marchese J, Ponce M, Ochoa NA et al (2003) Fouling behaviour of polyethersulfone UF membranes made with different PVP. J Membr Sci 211:1–11.  https://doi.org/10.1016/S0376-7388(02)00260-0 CrossRefGoogle Scholar
  16. Maximous N, Nakhla G, Wan W, Wong K (2009) Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J Membr Sci 341:67–75.  https://doi.org/10.1016/j.memsci.2009.05.040 CrossRefGoogle Scholar
  17. Pinnau I, Freeman BD (1999) Formation and modification of polymeric membranes: overview. In: Membrane formation and modification. ACS symposium series, vol 744. American Chemical Society, Washington, DC, pp 1–22.  https://doi.org/10.1021/bk-2000-0744.ch001
  18. Razmjou A, Mansouri J, Chen V et al (2011) Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process. J Membr Sci 380:98–113.  https://doi.org/10.1016/j.memsci.2011.06.035 CrossRefGoogle Scholar
  19. Shen JN, Ruan HM, Wu LG, Gao CJ (2011) Preparation and characterization of PES-SiO2 organic-inorganic composite ultrafiltration membrane for raw water pretreatment. Chem Eng J 168:1272–1278.  https://doi.org/10.1016/j.cej.2011.02.039 CrossRefGoogle Scholar
  20. Shen L, Bian X, Lu X et al (2012) Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes. Desalination 293:21–29.  https://doi.org/10.1016/J.DESAL.2012.02.019 CrossRefGoogle Scholar
  21. Sun M, Su Y, Mu C, Jiang Z (2010) Improved antifouling property of PES ultrafiltration membranes using additive of silica—PVP nanocomposite. Ind Eng Chem Res 49:790–796.  https://doi.org/10.1021/ie900560e CrossRefGoogle Scholar
  22. TCT A (1991) Membrane pore characterization—comparison between single and multicomponent solute probe techniques. J Membr Sci 57:271–287.  https://doi.org/10.1016/S0376-7388(00)80683-3 CrossRefGoogle Scholar
  23. Walcarius A, Collinson MM (2009) Analytical chemistry with silica sol–gels: traditional routes to new materials for chemical analysis. Annu Rev Anal Chem 2:121–143.  https://doi.org/10.1146/annurev-anchem-060908-155139 CrossRefGoogle Scholar
  24. Wang Y-Q, Su Y-L, Sun Q et al (2006) Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone. J Membr Sci 286:228–236.  https://doi.org/10.1016/J.MEMSCI.2006.09.040 CrossRefGoogle Scholar
  25. Yu LY, Xu ZL, Shen HM, Yang H (2009) Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J Membr Sci 337:257–265.  https://doi.org/10.1016/j.memsci.2009.03.054 CrossRefGoogle Scholar
  26. Yu H, Zhang X, Zhang Y et al (2013) Development of a hydrophilic PES ultrafiltration membrane containing SiO2@N-Halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination 326:69–76.  https://doi.org/10.1016/j.desal.2013.07.018 CrossRefGoogle Scholar
  27. Yune PS, Kilduff JE, Belfort G (2011) Fouling-resistant properties of a surface-modified poly(ether sulfone) ultrafiltration membrane grafted with poly(ethylene glycol)-amide binary monomers. J Membr Sci 377:159–166.  https://doi.org/10.1016/J.MEMSCI.2011.04.029 CrossRefGoogle Scholar
  28. Zhang Y, Jin Z, Shan X et al (2011) Preparation and characterization of phosphorylated Zr-doped hybrid silica/PSF composite membrane. J Hazard Mater 186:390–395.  https://doi.org/10.1016/j.jhazmat.2010.11.016 CrossRefGoogle Scholar
  29. Zhao W, Huang J, Fang B et al (2011) Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles. J Memb Sci 369:258–266.  https://doi.org/10.1016/j.memsci.2010.11.065 CrossRefGoogle Scholar
  30. Zhong S-H, Li C-F, Xiao X-F (2002) Preparation and characterization of polyimide–silica hybrid membranes on kieselguhr–mullite supports. J Membr Sci 199:53–58.  https://doi.org/10.1016/S0376-7388(01)00676-7 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Mozhgan Shamsodin
    • 1
  • Masoud Nasiri
    • 2
  • Mostafa Fazli
    • 1
  1. 1.Department of ChemistrySemnan UniversitySemnanIran
  2. 2.Department of Chemical, Petroleum and Gas EngineeringSemnan UniversitySemnanIran

Personalised recommendations