Cellulose

, Volume 25, Issue 4, pp 2367–2380 | Cite as

Mechanical properties of polyamide 11 reinforced with cellulose nanofibres from Triodia pungens

  • Sven Rohner
  • Jarrad Humphry
  • Céline M. Chaléat
  • Luigi-Jules Vandi
  • Darren J. Martin
  • Nasim Amiralian
  • Michael T. Heitzmann
Original Paper
  • 103 Downloads

Abstract

There is a growing demand for the development of new renewable materials and the replacement of fossil fuel based polymers with bio-based polymers and composites. Cellulose nanofibres (CNF) is an emerging nano-reinforcement agent for polymers to improve mechanical properties. The preparation and properties of bionanocomposites consisting of spinifex cellulose nanofibres and bio-based polyamide 11 are reported. The freeze-dried nanofibres derived from a native Australian grass, Triodia pungens (spinifex), and wood were first premixed with the polymer at low concentration (0.1–0.5 wt%) using a jet mill, prior to melt-compounding via extrusion and injection-moulding of test specimens. The thermal and decomposition behaviours, as characterised by TGA and DSC, remained mostly unchanged. DSC and XRD show that crystallinity is largely unaffected by the presence of CNF, and thus all property changes may be attributed solely to the reinforcement effect of the fibres. Product specimens reinforced with CNF produced from spinifex (SCNF), showed an increase in tensile strength (+ 23%), toughness (+ 61%) and impact strength (+ 67%).

Keywords

Spinifex Cellulose nanofibres Polyamide 11 Nanocomposites Mechanical properties 

Notes

Acknowledgments

The authors thank the department of education of the Canton of Aargau, Switzerland for providing a scholarship (to S.R.). They also acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland, Alireza Hosseinmardi for taking images and providing FTIR data, and John Milne for his help during the extrusion processing.

References

  1. Amiralian N, Annamalai PK, Memmott P, Martin DJ (2015a) Isolation of cellulose nanofibrils from triodia pungens via different mechanical methods. Cellulose 22(4):2483–2498CrossRefGoogle Scholar
  2. Amiralian N, Annamalai PK, Memmott P, Taran E, Schmidt S, Martin DJ (2015b) Easily deconstructed, high aspect ratio cellulose nanofibres from triodia pungens; an abundant grass of australia’s arid zone. RSC Adv 5:32124–32132CrossRefGoogle Scholar
  3. Aoyagi Y, Yamashita K, Doi Y (2002) Thermal degradation of poly[(r)-3-hydroxybutyrate], poly[\(\epsilon\)-caprolactone], and poly[(s)-lactide]. Polym Degrad Stab 76(1):53–59CrossRefGoogle Scholar
  4. Bicu I, Mustata F (2011) Cellulose extraction from orange peel using sulfite digestion reagents. Bioresour Technol 102(21):10013–10019CrossRefGoogle Scholar
  5. Cho SY, Yun YS, Jin HJ (2014) Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals. Macromol Res 22(7):753–756CrossRefGoogle Scholar
  6. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80(3):852–859CrossRefGoogle Scholar
  7. Grassie N, Murray E, Holmes P (1984) The thermal degradation of poly(-(d)-\(\beta\)-hydroxybutyric acid): part 1—identification and quantitative analysis of products. Polym Degrad Stab 6(1):47–61CrossRefGoogle Scholar
  8. Hablot E, Bordes P, Pollet E, Avérous L (2008) Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)-based multiphase systems. Polym Degrad Stab 93(2):413–421CrossRefGoogle Scholar
  9. Heitzmann MT, Veidt M, Ng CT, Lindenberger B, Hou M, Truss R, Liew CK (2012) Single-plant biocomposite from ricinus communis: preparation, properties and environmental performance. J Polym Environ 21(2):366–374CrossRefGoogle Scholar
  10. Huang S, Wang M, Liu T, Zhang W-D, Tjiu WC, He C, Lu X (2009) Morphology, thermal, and rheological behavior of nylon 11/multi-walled carbon nanotube nanocomposites prepared by melt compounding. Polym Eng Sci 49(6):1063–1068CrossRefGoogle Scholar
  11. Inoue M (1963) Studies on crystallization of high polymers by differential thermal analysis. J Polym Sci Part A Gen Pap 1(8):2697–2709CrossRefGoogle Scholar
  12. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9(3):1022–1026 PMID: 18247566CrossRefGoogle Scholar
  13. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576 PMID: 19645441CrossRefGoogle Scholar
  14. Khalil HPSA, Ismail H, Rozman HD, Ahmad MN (2001) The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur Polym J 37:1037–1045CrossRefGoogle Scholar
  15. Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRefGoogle Scholar
  16. Kohan MI (ed) (1995) Nylon plastics handbook. Munich, MunichGoogle Scholar
  17. Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6(6):3160–3165 PMID: 16283741CrossRefGoogle Scholar
  18. Latko P, Kolbuk D, Kozera R, Boczkowska A (2015) Microstructural characterization and mechanical properties of PA11 nanocomposite fibers. J Mater Eng Perform 25(1):68–75CrossRefGoogle Scholar
  19. Liu S, Yu Y, Cui Y, Zhang H, Mo Z (1998) Isothermal and nonisothermal crystallization kinetics of nylon-11. J Appl Polym Sci 70(12):2371–2380CrossRefGoogle Scholar
  20. Liu T, Lim KP, Tjiu WC, Pramoda K, Chen Z-K (2003) Preparation and characterization of nylon 11/organoclay nanocomposites. Polymer 44(12):3529–3535CrossRefGoogle Scholar
  21. Mago G, Kalyon DM, Fisher FT (2011) Nanocomposites of polyamide-11 and carbon nanostructures: development of microstructure and ultimate properties following solution processing. J Polym Sci Part B Polym Phys 49(18):1311–1321CrossRefGoogle Scholar
  22. Marchessault R (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl Chem 5(1–2):107–130Google Scholar
  23. Mathias LJ, Powell DG, Autran JP, Porter RS (1990) Nitrogen-15 nmr characterization of multiple crystal forms and phase transitions in polyundecanamide (nylon 11). Macromolecules 23(4):963–967CrossRefGoogle Scholar
  24. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  25. Nair SS, Ramesh C, Tashiro K (2006) Crystalline phases in nylon-11: studies using HTWAXS and HTFTIR. Macromolecules 39(8):2841–2848CrossRefGoogle Scholar
  26. Nayak P (2000) Natural oil-based polymers: opportunities and challenges. J Macromol Sci Part C 40(1):1–21CrossRefGoogle Scholar
  27. Nazari B, Bousfield D (2016) Cellulose nanofibers influence on properties and processing of paperboard coatings. Nordic Pulp Pap Res J 31(3):511–520CrossRefGoogle Scholar
  28. Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, Rahmat A (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200CrossRefGoogle Scholar
  29. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18 (Special Issue on Biocomposites)CrossRefGoogle Scholar
  30. Panaitescu DM, Frone AN, Nicolae C (2013) Micro- and nano-mechanical characterization of polyamide 11 and its composites containing cellulose nanofibers. Eur Polym J 49(12):3857–3866CrossRefGoogle Scholar
  31. Panaitescu DM, Gabor RA, Frone AN, Vasile E (2015) Influence of thermal treatment on mechanical and morphological characteristics of polyamide 11/cellulose nanofiber nanocomposites. J. Nanomater 2015:4:4CrossRefGoogle Scholar
  32. Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci 405:85–95CrossRefGoogle Scholar
  33. Peng Y, Gardner DJ, Han Y (2015) Characterization of mechanical and morphological properties of cellulose reinforced polyamide 6 composites. Cellulose 22(5):3199–3215CrossRefGoogle Scholar
  34. Poletto M, Zattera AJ, Santana RMC (2012) Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresour Technol 126:7–12CrossRefGoogle Scholar
  35. Poletto M, Ornaghi Júnior HL, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials 7(9):6105–6119CrossRefGoogle Scholar
  36. Qua E, Hornsby P (2011) Preparation and characterisation of nanocellulose reinforced polyamide-6. Plast Rubber Compos 40(6/7):300–306CrossRefGoogle Scholar
  37. Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotechnol 4:165–188CrossRefGoogle Scholar
  38. Roguet E, Tencé-Girault S, Castagnet S, Grandidier J, Hochstetter G (2007) Micromechanisms involved in the atypical tensile behavior observed in polyamide 11 at high temperature. J Polym Sci Part B Polym Phys 45(22):3046–3059CrossRefGoogle Scholar
  39. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491 PMID: 17630692CrossRefGoogle Scholar
  40. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  41. Stoclet G, Sclavons M, Devaux J (2013) Relations between structure and property of polyamide 11 nanocomposites based on raw clays elaborated by water-assisted extrusion. J Appl Polym Sci 127(6):4809–4824CrossRefGoogle Scholar
  42. Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51(12):2652–2660CrossRefGoogle Scholar
  43. Wagner J R, Mount III E M, Giles H F Jr (2014) Extrusion the definitive processing guide and handbook. William Andrews Publications, New YorkGoogle Scholar
  44. Wang B, Ding Z, Hu G (2008) Melting behavior and isothermal crystallization kinetics of nylon 11/EVOH/dicumyl peroxide blends. Polym Eng Sci 48(12):2354–2361CrossRefGoogle Scholar
  45. Winter A, Andorfer L, Herzele S, Zimmermann T, Saake B, Edler M, Griesser T, Konnerth J, Gindl-Altmutter W (2017) Reduced polarity and improved dispersion of microfibrillated cellulose in poly(lactic-acid) provided by residual lignin and hemicellulose. J Mater Sci 52(1):60–72CrossRefGoogle Scholar
  46. Xiao B, Sun X, Sun R-C (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74(2):307–319CrossRefGoogle Scholar
  47. Zhang Q, Mo Z, Liu S, Zhang H (2000) Influence of annealing on structure of nylon 11. Macromolecules 33(16):5999–6005CrossRefGoogle Scholar
  48. Zhang Q, Mo Z, Zhang H, Liu S, Cheng S (2001) Crystal transitions of nylon 11 under drawing and annealing. Polymer 42(13):5543–5547CrossRefGoogle Scholar
  49. Zhang G, Li Y, Yan D (2004) Polymorphism in nylon-11/montmorillonite nanocomposite. J Polym Sci Part B Polym Phys 42(2):253–259CrossRefGoogle Scholar
  50. Zierdt P, Weber A (2015) Processing and characterization of wood plastic composites from biobased polyamide 11 and chemically modified beech fibers. Mater Sci Forum 825–826:1039–1046CrossRefGoogle Scholar
  51. Zierdt P, Theumer T, Kulkarni G, DÃd’umlich V, Klehm J, Hirsch U, Weber A (2015) Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers. Sustain Mater Technol 6:6–14Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Sven Rohner
    • 1
  • Jarrad Humphry
    • 2
  • Céline M. Chaléat
    • 4
  • Luigi-Jules Vandi
    • 3
  • Darren J. Martin
    • 4
  • Nasim Amiralian
    • 4
  • Michael T. Heitzmann
    • 2
  1. 1.Department of Mechanical and Process EngineeringSwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  2. 2.School of Mechanical and Mining EngineeringThe University of QueenslandBrisbaneAustralia
  3. 3.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  4. 4.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia

Personalised recommendations