, Volume 26, Issue 4, pp 2715–2728 | Cite as

A novel monosodium-glutamate-based flame retardant containing phosphorus for cotton fabrics

  • Shuo Huang
  • Ling Zhong
  • Shengnan Li
  • Mingsheng Liu
  • Zhao Zhang
  • Fengxiu Zhang
  • Guangxian ZhangEmail author
Original Research


A novel bio-based flame retardant ammonium salt of sodium glutamate tetramethylenephosphonic acid (ASGTMPA) was synthesized for cotton. The structure of ASGTMPA was characterized by nuclear magnetic resonance. When the concentration of ASGTMPA was 30%, the limit oxygen index of treated cotton fabric reached 39.5% and was 26.3% after 50 laundering cycles. TG and TG-IR results suggested that ASGTMPA-treated cotton remarkably promoted dehydration of cellulose to form char and reduced production of flammable volatiles. Cone calorimetry and thermogravimetry tests indicated that the ASGTMPA-treated cotton fabric had a lower decomposing temperature and promoted char formation, with peak heat release rate and total heat release lower than those of unfinished cotton fabrics. In a vertical flammability test, the treated cotton fabric showed no after-flame or after-glow, and the char length was 35 mm. The Fourier-transform infrared spectra showed that ASGTMPA combined with cellulose through P–O–C and –COOC– covalent bonds. SEM images revealed that the morphologies of the original and treated cotton fibers were similar.

Graphical abstract


Cotton fabric Sodium glutamate Flame retardant Durability 



This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. XDJK2018D009).


  1. Abou-Okeil A, El-Sawy SM, Abdel-Mohdy FA (2013) Flame retardant cotton fabrics treated with organophosphorus polymer. Carbohydr Polym 92(2):2293–2298CrossRefGoogle Scholar
  2. Alongi J, Colleoni C, Rosace G, Malucelli G (2013) Phosphorus- and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: synergisms or additive effects. Polym Degrad Stab 98:579–589CrossRefGoogle Scholar
  3. Alongi J, Carosio F, Malucelli G (2014a) Current emerging techniques to impart flame retardancy to fabrics: an overview. Polym Degrad Stab 106:138–149CrossRefGoogle Scholar
  4. Alongi J, Bosco F, Carosio F, Di Blasio A, Malucelli G (2014b) A new era for flame retardant materials Mater. Today 17:152–153Google Scholar
  5. Bourbigot S, Fontaine G (2010) Flame retardancy of polylactide: an overview. Polym Chem 1(9):1413–1422CrossRefGoogle Scholar
  6. Breulet H, Steenhuizen T (2005) Fire testing of cables: comparison of SBI with FIPEC/Europacable tests. Polym Degrad Stab 88(1):150–158CrossRefGoogle Scholar
  7. Carosio F, Fontaine G, Alongi J, Bourbihot S (2015) Starch-based layer by layer assembly: efficient and sustainable approach to cotton fire protection. ACS Appl Mater Interfaces 7(22):12158–12167CrossRefGoogle Scholar
  8. Chang S, Condon B, Graves E, Uchimiya M, Fortier C, Easson M (2011) Flame retardant properties of triazinephosphonates derivative with cotton fabric. Fibers Polym 12:334–339CrossRefGoogle Scholar
  9. Chang S, Condon B, Nguyen T-M, Graves E, Smith J (2012) Antiflammable properties of capable phosphorus–nitrogen-containing triazine derivatives on cotton. Fire Polym VI New Adv Flame Retard Chem Sci 1118:123–137CrossRefGoogle Scholar
  10. Chen Y, Frendi A, Tewari SS, Sibulkin M (1991) Combustion properties of pure and fire-retarded cellulose. Combust Flame 841:21–40Google Scholar
  11. Cheng X, Yang CQ (2009a) Flame retardant finishing of cotton fleece fabric. Part V. Phosphorus-containing maleic acid oligomers. Fire Mater 33(8):365–375CrossRefGoogle Scholar
  12. Cheng X, Yang CQ (2009b) Flame retardant finishing of cotton fleece fabric. Part IV. Bifunctional carboxylic acids. J Fire Sci 27:431–446CrossRefGoogle Scholar
  13. Dong C, Lu Z, Wang P, Zhu P, Li X, Sui S, Liu J (2016) Flammability and thermal properties of cotton fabrics modified with a novel flame retardant containing triazine and phosphorus components. Text Res J 87(11):1367–1376. CrossRefGoogle Scholar
  14. Gaan S, Sun G (2007) Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym Degrad Stab 92:968–974CrossRefGoogle Scholar
  15. Gaan S, Sun G (2009) Effect of nitrogen additives on thermal decomposition of cotton. J Anal Appl Pyrol 84(1):108–115CrossRefGoogle Scholar
  16. Gao WW, Zhang GX, Zhang FX (2015) Enhancement of flame retardancy of cotton fabrics by grafting a novel organic phosphorous-based flame retardant. Cellulose 22:2787–2796CrossRefGoogle Scholar
  17. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392CrossRefGoogle Scholar
  18. Horrocks AR, Kandola BK, Davies PJ, Zhang S, Padbury SA (2005) Developments in flame retardant textiles-a review. Polym Degrad Stab 88:3–12CrossRefGoogle Scholar
  19. Hu S, Hu Y, Song L, Lu H (2010) Effect of modified organic–inorganic hybrid materials on thermal properties of cotton fabrics. J Therm Anal Calorim 103(2):423–427CrossRefGoogle Scholar
  20. Jenny A, Riccardo AC, Francesca B, Federico C, Alessandro DB, Fabio C et al (2014) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117CrossRefGoogle Scholar
  21. Lam YL, Kan CW, Yuen CW (2011a) Effect of oxygen plasma pre-treatment and titanium dioxide overlay coating on flame retardant finished cotton fabrics. Bio Res 6(2):1454–1474Google Scholar
  22. Lam YL, Kan CW, Yuen CWM (2011b) Flame-retardant finishing in cotton fabrics using zinc oxide co-catalyst. J Appl Polym Sci 12:612–621CrossRefGoogle Scholar
  23. Lambert J, Shurvell H, Lightner D, Cooks R (1998) Organic structural spectroscopy. Prentice-Hall Inc., New JerseyGoogle Scholar
  24. Lecoeur E, Vroman I, Bourbigot S, Lam TM, Delobel R (2001) The fire-retarding effect of inorganic phosphorus compounds on the combustion of cellulosic materials. Polym Degrad Stab 74(3):487–492CrossRefGoogle Scholar
  25. Levchik SV, Weil ED (2004) Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym Int 53:1901–1929CrossRefGoogle Scholar
  26. Levchik SV, Piotrowski A, Weil ED, Yao Q (2005) New developments in flame retardancy of epoxy resins. Polym Degrad Stab 88:57–62CrossRefGoogle Scholar
  27. Li XH, Chen HY, Wang WT, Liu YQ, Zhao PH (2015) Synthesis of a formaldehyde-free phosphoruse nitrogen flame retardant with multiple reactive groups and its application in cotton fabrics. Polym Degrad Stab 120:193–202CrossRefGoogle Scholar
  28. Liu W, Chen L, Wang Y-Z (2012) A novel phosphorus-containing flame retardant for the form aldehyde-free treatment of cotton fabrics. Polym Degrad Stab 97:2487–2491CrossRefGoogle Scholar
  29. Liu X, Zhang Q, Cheng B, Ren Y, Zhang Y, Ding C (2017) Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose 25:799–811. CrossRefGoogle Scholar
  30. Malucelli G, Bosco F, Alongi J, Carosio F, Di Blasio A, Mollea C, Cuttica F, Casale A (2014) Biomacromolecules as novel green flame retardant systems for textiles: an overview. RSC Adv 4:46024–46039CrossRefGoogle Scholar
  31. Nada A, Hamed S, Soliman S, Mongy S (2005) Spectroscopic and ion exchange studies on modified cotton linters. J Sci Ind Res 64:1003Google Scholar
  32. Nehra S, Hanumansetty S, O’Rear EA et al (2014) Enhancement in flame retardancy of cotton fabric by using surfactant-aided polymerization. Polym Degrad Stab 109(109):137–146CrossRefGoogle Scholar
  33. Price D, Horrocks AR, Akalin M, Faroq AA (1997) Influence of flame retardant on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrol 40–41:511–524CrossRefGoogle Scholar
  34. Price D, Pyrah K, Hull TR et al (2002) Flame retardance of poly(methyl methacrylate) modified with phosphorus-containing compounds. Polym Degrad Stab 77(2):227–233CrossRefGoogle Scholar
  35. Ren Y, Huo T, Qin Y, Liu X (2018) Preparation of flame retardant polyacrylonitrile fabric based on sol–gel and layer-by-layer assembly. Materials (Basel) 11(4):483. CrossRefGoogle Scholar
  36. Schartel B, Braun U, Balabanovich AI, Artner J, Ciesielski M, Doring M et al (2008) Pyrolisis and fire behaviour of epoxy systems containing a novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener. Eur Polym J 44:704–715CrossRefGoogle Scholar
  37. Shao ZB et al (2014) An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application. ACS Appl Mater Interfaces 6:7363–7370CrossRefGoogle Scholar
  38. Siriviriyanun A, O’Rear EA, Yanumet N (2008) Self-extinguishing cotton fabric with minimal phosphorus deposition. Cellulose 15(5):731–737CrossRefGoogle Scholar
  39. Sponton M, Ronda JC, Galia M, Cadiz V (2009) Cone calorimetry studies of benzoxazine–epoxy systems flame retarded by chemically bonded phosphorus or silicon. Polym Degrad Stab 94:102–106CrossRefGoogle Scholar
  40. Wang S, Sui X, Li Y, Li J, Xu H, Zhong Y et al (2016) Durable flame retardant finishing of cotton fabrics with organosilicon functionalized cyclotriphosphazene. Polym Degrad Stab 128:22–28CrossRefGoogle Scholar
  41. Weil ED, Levchik SV (2008) Flame retardants in commercial use or development for textiles. Fire Sci 26(3):243–281CrossRefGoogle Scholar
  42. Wu W, Yang CQ (2004) Comparison of DMDHEU and melamine- formaldehyde as the bonding agents for a hydroxyl-functional organophosphorus flame retarding agent on cotton. J Fire Sci 22:125–142CrossRefGoogle Scholar
  43. Xiaolin H (2010) The determination of sodium glutamate content in MSG. China Well Rock Salt 41(5):35–36Google Scholar
  44. Xie JX (1987) Application of infrared spectroscopy in organic chemistry and pharmaceutical chemistry, 1st edn. Science Press, Beijing, Chapter 5, pp 71, 77–78 and Chapter 16, p 354Google Scholar
  45. Xie KL, Gao AQ, Zhang YS (2013) Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohydr Polym 98:706–710CrossRefGoogle Scholar
  46. Yuan H, Xing W, Zhang P, Song L, Hu Y (2012) Functionalization of cotton with uv-cured flame retardant coatings. Ind Eng Chem Res 51(15):5394–5401. CrossRefGoogle Scholar
  47. Zhang Z, Wang C, Huang G, Liu H, Yang S, Zhang A (2018) Thermal degradation behaviors and reaction mechanism of carbon fibre-epoxy composite from hydrogen tank by TG-FTIR. J Hazard Mater 357:73–80. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Shuo Huang
    • 1
    • 2
  • Ling Zhong
    • 3
  • Shengnan Li
    • 1
    • 2
  • Mingsheng Liu
    • 4
  • Zhao Zhang
    • 5
  • Fengxiu Zhang
    • 4
  • Guangxian Zhang
    • 1
    • 2
    Email author
  1. 1.College of Textile and GarmentSouthwest UniversityChongqingPeople’s Republic of China
  2. 2.Chongqing Engineering Research Center of Biomaterial Fiber and Modern TextileChongqingPeople’s Republic of China
  3. 3.Chongqing Municipality Fiber Inspection BureauChongqingPeople’s Republic of China
  4. 4.College of Chemistry and Chemical EngineeringSouthwest UniversityChongqingPeople’s Republic of China
  5. 5.Regus Office 19FChongqingPeople’s Republic of China

Personalised recommendations