Advertisement

Cellulose

, Volume 24, Issue 2, pp 769–779 | Cite as

Producing aerogels from silanized cellulose nanofiber suspension

  • Márcia ZaniniEmail author
  • Alessandra Lavoratti
  • Lídia Kunz Lazzari
  • Deise Galiotto
  • Marlova Pagnocelli
  • Camila Baldasso
  • Ademir José Zattera
Original Paper

Abstract

Aerogels from biodegradable and renewable sources such as cellulose, for example, have become a promising alternative to separate oil from water. However, surface treatments are necessary to provide hydrophobic characteristics to the sorbents. This study aims to evaluate the chemical treatment of cellulose nanofibers (CNFs) with methyltrimethoxysilane (MTMS), in order to obtain hydrophobic sorbents to be used in the removal of oil spills from aquatic environments. CNFs were obtained from cellulose pulp waste by mechanical grinding, with a fiber diameter ranging from 40 to 66 nm. Four different chemical treatment methodologies were tested. The treatment of CNFs with MTMS using mechanical stirring at 500 rpm for 1 h, at 70 °C for 2 h, followed by freeze drying was the most effective one to obtain hydrophobic CNF aerogels. The samples presented a contact angle with water of 133.51°, sorption capacity in heterogeneous medium of 16.78 g g−1, and oil removal efficiency of 87.9%.

Keywords

Cellulose nanofiber (CNF) Aerogel Organosilane Freeze drying Oil sorption 

Notes

Acknowledgments

The authors would like to thank Conselho Nacional de Pesquisa e Desenvolvimento (CNPQ), and Secretaria da Ciência, Inovação e Desenvolvimento do Rio Grande do Sul (SCT/RS) for the financial support.

Supplementary material

Supplementary material 1 (MP4 1353 kb)

References

  1. Abdul Khalil HPS, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979. doi: 10.1016/j.carbpol.2011.08.078 CrossRefGoogle Scholar
  2. Abdullah MA, Rahmah AU, Man Z (2010) Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J Hazard Mater 177:683–691. doi: 10.1016/j.jhazmat.2009.12.085 CrossRefGoogle Scholar
  3. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi: 10.1021/bm700624p CrossRefGoogle Scholar
  4. Annunciado TR, Sydenstricker THD, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50:1340–1346. doi: 10.1016/j.marpolbul.2005.04.043 CrossRefGoogle Scholar
  5. Agência Nacional do Petróleo - ANP (2015) Brazilian statistical yearbook of petroleum, natural gas and biofuels. http://www.anp.gov.br/wwwanp/publicacoes/anuario-estatistico/2440-anuario-estatistico-2015. Accessed 18 Dec 2015
  6. Arboleda JC, Hughes M, Lucia LA, Laine J, Ekman K, Rojas OJ (2013) Soy protein-nanocellulose composite aerogels. Cellulose 20:2417–2426. doi: 10.1007/s10570-013-9993-4 CrossRefGoogle Scholar
  7. Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410. doi: 10.1007/s10570-011-9629-5 CrossRefGoogle Scholar
  8. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. doi: 10.1016/j.carbpol.2010.10.040 CrossRefGoogle Scholar
  9. Chen Z, Hu TQ, Jang HF, Grant E (2015) Modification of xylan in alkaline treated bleached hardwood kraft pulps as classified by attenuated total-internal-reflection (ATR) FTIR spectroscopy. Carbohydr Polym 127:418–426. doi: 10.1016/j.carbpol.2015.03.084 CrossRefGoogle Scholar
  10. Cunha AG, Freire C, Silvestre A, Neto CP, Gandini A, Belgacem MN, Chaussy D, Beneventi D (2010) Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas-solid reaction. J Colloid Interface Sci 344:588–595. doi: 10.1016/j.jcis.2009.12.057 CrossRefGoogle Scholar
  11. De Rosa IM, Kenny JM, Maniruzzaman M, Moniruzzaman M, Monti M, Puglia D, Santulli C, Sarasini F (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol 71:246–254. doi: 10.1016/j.compscitech.2010.11.023 CrossRefGoogle Scholar
  12. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277. doi: 10.1021/bm700972k CrossRefGoogle Scholar
  13. Hubbe M, Rojas OJ, Lucia L, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980. doi: 10.15376/biores.3.3.929-980 Google Scholar
  14. Ibrahim S, Ang H-M, Wang S (2009) Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresour Technol 100:5744–5749. doi: 10.1016/j.biortech.2009.06.070 CrossRefGoogle Scholar
  15. Indústria Brasileira de Árvores - IBÁ (2015) Statictics of the Brazilian tree industry. http://iba.org/images/shared/Cenarios_dezembro.pdf. Accessed 15 Dec 2015
  16. Javadi A, Zheng Q, Payen F, Javadi A, Altin Y, Cai Z, Sabo R, Gong S (2013) Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels. ACS Appl Mater Interfaces 5:5969–5975. doi: 10.1021/am400171y CrossRefGoogle Scholar
  17. Jia X, Chen Y, Shi C, Ye Y, Muhammad Abid M, Jabbar S, Wang P, Zeng X, Wu T (2014) Rheological properties of an amorphous cellulose suspension. Food Hydrocoll 39:27–33. doi: 10.1016/j.foodhyd.2013.12.026 CrossRefGoogle Scholar
  18. Jin C, Han S, Li J, Sun Q (2015) Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydr Polym 123:150–1656. doi: 10.1016/j.carbpol.2015.01.056 CrossRefGoogle Scholar
  19. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31. doi: 10.1007/s00396-013-3112-9 CrossRefGoogle Scholar
  20. Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21:510–517. doi: 10.1002/adfm.201001431 CrossRefGoogle Scholar
  21. Lavoratti A, Scienza LC, Zaterra AJ (2016) Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydr Polym 136:1–31. doi: 10.1016/j.carbpol.2015.10.008 CrossRefGoogle Scholar
  22. Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832. doi: 10.1021/acssuschemeng.5b00144 CrossRefGoogle Scholar
  23. Likon M, Remškar M, Ducman V, Švegl F (2013) Populus seed fibers as a natural source for production of oil super absorbents. J Environ Manag 114:158–167. doi: 10.1016/j.jenvman.2012.03.047 CrossRefGoogle Scholar
  24. Liu F, Ma M, Zang D, Gao Z, Wang C (2014) Fabrication of superhydrophobic/ superoleophilic cotton for application in the field of water/oil separation. Carbohydr Polym 103:480–487. doi: 10.1016/j.carbpol.2013.12.022 CrossRefGoogle Scholar
  25. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials (Basel) 6:1745–1766. doi: 10.3390/ma6051745 CrossRefGoogle Scholar
  26. Nakagaito A, Kondo H, Takagi H (2013) Cellulose nanofiber aerogel production and applications. J Reinf Plast Compos 32:1547–1552. doi: 10.1177/0731684413494110 CrossRefGoogle Scholar
  27. Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A Physicochem Eng Asp 445:128–134. doi: 10.1016/j.colsurfa.2014.01.015 CrossRefGoogle Scholar
  28. Ozmen N, Çetin NS, Tingaut P, Sèbe G (2007) Transesterification reaction between acetylated wood and trialkoxysilane coupling agents. J Appl Polym Sci 115:570–575. doi: 10.1002/app.26069 CrossRefGoogle Scholar
  29. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglundc LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499. doi: 10.1039/B810371B CrossRefGoogle Scholar
  30. Popescu CM, Singurel G, Popescu MC, Vasile C, Argyropoulos DS, Willför S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym 77:851–857. doi: 10.1016/j.carbpol.2009.03.011 CrossRefGoogle Scholar
  31. Pour G, Beauger C, Rigacci A, Budtova T (2015) Xerocellulose: lightweight, porous and hydrophobic cellulose prepared via ambient drying. J Mater Sci 50:4526–4535. doi: 10.1007/s10853-015-9002-4 CrossRefGoogle Scholar
  32. Rengasamy RS, Das D, Praba Karan C (2011) Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J Hazard Mater 186:526–532. doi: 10.1016/j.jhazmat.2010.11.031 CrossRefGoogle Scholar
  33. Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381. doi: 10.1021/acsami.5b00846 CrossRefGoogle Scholar
  34. Sim K, Ryu J, Youn HJ (2015) Structural characteristics of nanofibrillated cellulose mats: effect of preparation conditions. Fibers Polym 16:294–301. doi: 10.1007/s12221-015-0294-4 CrossRefGoogle Scholar
  35. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  36. Song K, Yin Y, Salmén L, Xiao F, Jiang X (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49:1734–1742. doi: 10.1007/s10853-013-7860-1 CrossRefGoogle Scholar
  37. Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020. doi: 10.1007/s10570-010-9431-9 CrossRefGoogle Scholar
  38. Tansel B, Pascual B (2011) Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with and without polyelectrolyte use: pilot-scale investigation for estuarine and near shore applications. Chemosphere 85:1182–1186. doi: 10.1016/j.chemosphere.2011.07.006 CrossRefGoogle Scholar
  39. Tarrés Q, Oliver-Ortega H, Llop M, Pèlach MA, Delgado-Aguilar M, Mutjé P (2016) Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal. Cellulose 23:3077–3088. doi: 10.1007/s10570-016-1017-8 CrossRefGoogle Scholar
  40. Wahi R, Chuah LA, Choong TSY, Ngaini Z, Nourouzi MM (2013) Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep Purif Technol 113:51–63. doi: 10.1016/j.seppur.2013.04.015 CrossRefGoogle Scholar
  41. Wang J, Zheng Y, Wang A (2013) Coated kapok fiber for removal of spilled oil. Mar Pollut Bull 69:91–96. doi: 10.1016/j.marpolbul.2013.01.007 CrossRefGoogle Scholar
  42. Wu Z, Li C, Liang H, Chen J, Yu S (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed 125:2997–3001. doi: 10.1002/anie.201209676 CrossRefGoogle Scholar
  43. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–819. doi: 10.1016/j.compositesa.2010.03.005 CrossRefGoogle Scholar
  44. Zanini M, Lavoratti A, Zimmermann MVG, Galiotto D, Matana F, Baldasso C, Zaterra AJ (2016) Aerogel preparation from short cellulose nanofiber of the Eucalyptus species. J Cell Plast. doi: 10.1177/0021955X16670590 Google Scholar
  45. Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668. doi: 10.1021/cm5004164 CrossRefGoogle Scholar
  46. Zimmermann MVG, Borsoi C, Lavoratti A, Zanini M, Zaterra AJ, Santana RMS (2016) Drying techniques applied to cellulose nanofibers. J Reinf Plast Compos 35:628–643. doi: 10.1177/0731684415626286 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Márcia Zanini
    • 1
    Email author
  • Alessandra Lavoratti
    • 2
  • Lídia Kunz Lazzari
    • 1
  • Deise Galiotto
    • 1
  • Marlova Pagnocelli
    • 1
  • Camila Baldasso
    • 1
  • Ademir José Zattera
    • 1
  1. 1.Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC)University of Caxias do Sul (UCS)Caxias do SulBrazil
  2. 2.Postgraduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M)Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations