Advertisement

Cellulose

, Volume 23, Issue 6, pp 3625–3637 | Cite as

Morphological changes towards enhancing piezoelectric properties of PVDF electrical generators using cellulose nanocrystals

  • Hossein FashandiEmail author
  • Mohammad Mahdi AbolhasaniEmail author
  • Parastoo Sandoghdar
  • Nima Zohdi
  • Quanxiang Li
  • Minoo Naebe
Original Paper

Abstract

For the first time, a nanocomposite of poly(vinylidene fluoride)/cellulose nanocrystal (PVDF/CNC) is developed as a piezoelectric energy harvester. This is implemented through electrospinning of PVDF solutions containing different levels of CNC loading, i.e., 0, 1, 3 and 5 % with respect to PVDF weight. Analytical techniques including DSC, FTIR and WAXD are conducted to monitor the polymorphism evolution within electrospun nanocomposites as the CNC content is varied. The results imply that CNCs at the optimum concentration (3 and 5 %) can effectively nucleate β crystalline phases. The nucleation of α crystalline phases is also prevented when CNCs are present within the structure of PVDF electrospun fibers. These changes in polymorphism give PVDF/CNC nanocomposites enhanced piezoelectric characteristics compared to pure PVDF nanofibers. We have demonstrated that the developed nanocomposites can charge a 33-μF capacitor over 6 V and light up a commercial LED for more than 30 s. It is envisaged that the PVDF/CNC nanocomposites provide the opportunity for the development of efficient electrical generators as self-powering devices to charge portable electronics.

Keywords

PVDF Cellulose nanocrystal Electrospinning Nanocomposite Electrical power generator Energy harvesting Piezoelectricity 

Supplementary material

Supplementary material 1 (MP4 2844 kb)

References

  1. Abolhasani MM (2015) Effects of dynamic vulcanization on the kinetics of isothermal crystallization in a miscible polymeric blend. New J Chem 39:6130–6140CrossRefGoogle Scholar
  2. Abolhasani MM, Naebe M, Guo Q (2014a) A new approach for mechanisms of ferroelectric crystalline phase formation in PVDF nanocomposites. Phys Chem Chem Phys 16:10679–10687CrossRefGoogle Scholar
  3. Abolhasani MM, Naebe M, Jalali-Arani A, Guo Q (2014b) Crystalline structures and α → β and γ polymorphs transformation induced by nanoclay in PVDF-based nanocomposite. NANO 9:1450065CrossRefGoogle Scholar
  4. Abolhasani MM, Zarejousheghani F, Cheng Z, Naebe M (2015a) A facile method to enhance ferroelectric properties in PVDF nanocomposites. RSC Adv 5:22471–22479CrossRefGoogle Scholar
  5. Abolhasani MM, Ashjari M, Azimi S, Fashandi H (2015b) Investigation of an abnormal α polymorph formation in miscible PVDF nanocomposite blend using kinetics of crystallization. Macromol Chem Phys 217:543–553CrossRefGoogle Scholar
  6. Abolhasani MM, Azimi S, Fashandi H (2015c) Enhanced ferroelectric properties of electrospun poly(vinylidene fluoride) nanofibers by adjusting processing parameters. RSC Adv 5:61277–61283CrossRefGoogle Scholar
  7. Abolhasani MM, Fashandi H, Naebe M (2016) Crystalline polymorph transition in poly (vinylidene fluoride)(PVDF)/acrylic rubber (ACM)/clay partially miscible hybrid. Polym Bull 73:65–73CrossRefGoogle Scholar
  8. Ahn Y, Lim JY, Hong SM, Lee J, Ha J, Choi HJ et al (2013) Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly(vinylidene fluoride). J Phys Chem C 117:11791–11799CrossRefGoogle Scholar
  9. Baniasadi M, Huang J, Xu Z, Moreno S, Yang X, Chang J et al (2015) High-performance coils and yarns of polymeric piezoelectric nanofibers. ACS Appl Mater Interfaces 7:5358–5366CrossRefGoogle Scholar
  10. Baniasadi M, Xu Z, Hong S, Naraghi M, Minary-Jolandan M (2016) Thermo-electromechanical behavior of piezoelectric nanofibers. ACS Appl Mater Interfaces 8:2540–2551CrossRefGoogle Scholar
  11. Baqeri M, Abolhasani MM, Mozdianfard MR, Guo Q, Oroumei A, Naebe M (2015) Influence of processing conditions on polymorphic behavior, crystallinity, and morphology of electrospun poly(vInylidene fluoride) nanofibers. J Appl Polym Sci 132:1–10CrossRefGoogle Scholar
  12. Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904CrossRefGoogle Scholar
  13. Cao Y, Zavaterri P, Youngblood J, Moon R, Weiss J (2015) The influence of cellulose nanocrystal additions on the performance of cement paste. Cem Concr Compos 56:73–83CrossRefGoogle Scholar
  14. Cha SN, Seo J-S, Kim SM, Kim HJ, Park YJ, Kim S-W et al (2010) Sound-driven piezoelectric nanowire-based nanogenerators. Adv Mater 22:4726–4730CrossRefGoogle Scholar
  15. Cha S, Kim SM, Kim H, Ku J, Sohn JI, Park YJ et al (2011) Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett 11:5142–5147CrossRefGoogle Scholar
  16. Chang C, Tran VH, Wang J, Fuh Y-K, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726–731CrossRefGoogle Scholar
  17. Chang J, Dommer M, Chang C, Lin L (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1:356–371CrossRefGoogle Scholar
  18. Chen D, Zhang JXJ (2015) Microporous polyvinylidene fluoride film with dense surface enables efficient piezoelectric conversion. Appl Phys Lett 106:193901CrossRefGoogle Scholar
  19. Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137CrossRefGoogle Scholar
  20. Choi D, Choi M-Y, Choi WM, Shin H-J, Park H-K, Seo J-S et al (2010) Fully rollable transparent nanogenerators based on graphene electrodes. Adv Mater 22:2187–2192CrossRefGoogle Scholar
  21. Ding Y, Duan Y, Huang Y (2015) Electrohydrodynamically printed, flexible energy harvester using in situ poled piezoelectric nanofibers. Energy Technol 3:351–358CrossRefGoogle Scholar
  22. El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide—PVDF nanocomposite films. Appl Surf Sci 258:7668–7677CrossRefGoogle Scholar
  23. Fashandi H, Yegane A, Abolhasani MM (2015) Interplay of liquid-liquid and solid-liquid phase separation mechanisms in porosity and polymorphism evolution within poly(vinylidene fluoride) nanofibers. Fibers Polym 16:326–344CrossRefGoogle Scholar
  24. French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  25. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  26. Gheibi A, Bagherzadeh R, Merati AA, Latifi M (2014) Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J Polym Res 21:1–14Google Scholar
  27. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  28. Hadimani RL, Bayramol DV, Sion N, Shah T, Limin Q, Shaoxin S et al (2013) Continuous production of piezoelectric PVDF fibre for e-textile applications. Smart Mater Struct 22:075017CrossRefGoogle Scholar
  29. Henrique MA, Flauzino Neto WP, Silvério HA, Martins DF, Gurgel LVA, Barud HdS et al (2015) Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Ind Crops Prod 76:128–140CrossRefGoogle Scholar
  30. Huan S, Bai L, Liu G, Cheng W, Han G (2015) Electrospun nanofibrous composites of polystyrene and cellulose nanocrystals: manufacture and characterization. RSC Adv 5:50756–50766CrossRefGoogle Scholar
  31. Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y et al (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335CrossRefGoogle Scholar
  32. Lalia BS, Samad YA, Hashaikeh R (2012) Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance. J Solid State Electrochem 17:575–581CrossRefGoogle Scholar
  33. Lee M, Chen C-Y, Wang S, Cha SN, Park YJ, Kim JM et al (2012) A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 24:1759–1764CrossRefGoogle Scholar
  34. Lee J-H, Lee KY, Kumar B, Tien NT, Lee N-E, Kim S-W (2013) Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ Sci 6:169–175CrossRefGoogle Scholar
  35. Lin Y-F, Song J, Ding Y, Lu S-Y, Wang ZL (2008) Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect. Adv Mater 20:3127–3130CrossRefGoogle Scholar
  36. Liu Y-L, Li Y, Xu J-T, Fan Z-Q (2010) Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride). ACS Appl Mater Interfaces 2:1759–1768CrossRefGoogle Scholar
  37. Liu Z, Pan C, Lin L, Lai H (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sens Actuators A 193:13–24CrossRefGoogle Scholar
  38. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336CrossRefGoogle Scholar
  39. Lu M-Y, Song J, Lu M-P, Lee C-Y, Chen L-J, Wang ZL (2009) ZnO–ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 3:357–362CrossRefGoogle Scholar
  40. Ma W, Zhang J, Wang X, Wang S (2007) Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-dilute solutions. Appl Surf Sci 253:8377–8388CrossRefGoogle Scholar
  41. Mandal D, Yoon S, Kim KJ (2011) Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol Rapid Commun 32:831–837CrossRefGoogle Scholar
  42. Mandal D, Henkel K, Schmeißer D (2014) Improved performance of a polymer nanogenerator based on silver nanoparticles doped electrospun P (VDF–HFP) nanofibers. Phys Chem Chem Phys 16:10403–10407CrossRefGoogle Scholar
  43. Mao Y, Zhao P, McConohy G, Yang H, Tong Y, Wang X (2014) Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv Energy Mater 4:1–7CrossRefGoogle Scholar
  44. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706CrossRefGoogle Scholar
  45. Nakagawa K, Ishida Y (1973) Annealing effects in poly(vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy. J Polym Sci Polym Phys Ed 11:2153–2171CrossRefGoogle Scholar
  46. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRefGoogle Scholar
  47. Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D et al (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633CrossRefGoogle Scholar
  48. Pörhönen J, Rajala S, Lehtimäki S, Tuukkanen S (2014) Flexible piezoelectric energy harvesting circuit with printable supercapacitor and diodes. IEEE Trans Electron Dev 61:3303–3308CrossRefGoogle Scholar
  49. Pu J, Yan X, Jiang Y, Chang C, Lin L (2010) Piezoelectric actuation of direct-write electrospun fibers. Sens Actuators A 164:131–136CrossRefGoogle Scholar
  50. Pu X, Li L, Song H, Du C, Zhao Z, Jiang C et al (2015) A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater 27:2472–2478CrossRefGoogle Scholar
  51. Rajala S, Siponkoski T, Sarlin E, Mettänen M, Vuoriluoto M, Pammo A et al (2016) Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 8:15607–15614CrossRefGoogle Scholar
  52. Seminara L, Capurro M, Cirillo P, Cannata G, Valle M (2011) Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sens Actuators A 169:49–58CrossRefGoogle Scholar
  53. Shi Q, Zhou C, Yue Y, Guo W, Wu Y, Wu Q (2012) Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydr Polym 90:301–308CrossRefGoogle Scholar
  54. Shin S-H, Kim Y-H, Lee MH, Jung J-Y, Nah J (2014) Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8:2766–2773CrossRefGoogle Scholar
  55. Shiyou X, Yong S, Sang-Gook K (2006) Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 17:4497CrossRefGoogle Scholar
  56. Soin N, Shah TH, Anand SC, Geng J, Pornwannachai W, Mandal P et al (2014) Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ Sci 7:1670–1679CrossRefGoogle Scholar
  57. Sun LL, Li B, Zhang ZG, Zhong WH (2010) Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process. Eur Polym J 46:2112–2119CrossRefGoogle Scholar
  58. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246CrossRefGoogle Scholar
  59. Wang X, Song J, Zhang F, He C, Hu Z, Wang Z (2010) Electricity generation based on one-dimensional group-III nitride nanomaterials. Adv Mater 22:2155–2158CrossRefGoogle Scholar
  60. Xie Y, Wang S, Lin L, Jing Q, Lin Z-H, Niu S et al (2013) Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7:7119–7125CrossRefGoogle Scholar
  61. Xie Y, Wang S, Niu S, Lin L, Jing Q, Yang J et al (2014) Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv Mater 26:6599–6607CrossRefGoogle Scholar
  62. Yee WA, Kotaki M, Liu Y, Lu X (2007) Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer 48:512–521CrossRefGoogle Scholar
  63. Yee WA, Nguyen AC, Lee PS, Kotaki M, Liu Y, Tan BT et al (2008) Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer 49:4196–4203CrossRefGoogle Scholar
  64. Yu L, Cebe P (2009) Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Polymer 50:2133–2141CrossRefGoogle Scholar
  65. Zeng W, Tao X-M, Chen S, Shang S, Chan HLW, Choy SH (2013) Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ Sci 6:2631–2638CrossRefGoogle Scholar
  66. Zhang Z, Wu Q, Song K, Lei T, Wu Y (2015) Poly(vinylidene fluoride)/cellulose nanocrystals composites: rheological, hydrophilicity, thermal and mechanical properties. Cellulose 22:2431–2441CrossRefGoogle Scholar
  67. Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625CrossRefGoogle Scholar
  68. Zhu G, Su Y, Bai P, Chen J, Jing Q, Yang W et al (2014) Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8:6031–6037CrossRefGoogle Scholar
  69. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hossein Fashandi
    • 1
    Email author
  • Mohammad Mahdi Abolhasani
    • 2
    Email author
  • Parastoo Sandoghdar
    • 1
  • Nima Zohdi
    • 3
  • Quanxiang Li
    • 3
  • Minoo Naebe
    • 3
  1. 1.Department of Textile EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Chemical Engineering DepartmentUniversity of KashanKashanIran
  3. 3.Institute for Frontier MaterialsDeakin UniversityWaurn PondsAustralia

Personalised recommendations