, Volume 23, Issue 3, pp 1629–1637 | Cite as

Moisture adsorption of glucomannan and xylan hemicelluloses

  • Karol KulasinskiEmail author
  • Lennart Salmén
  • Dominique Derome
  • Jan Carmeliet
Original Paper


Wood and wood materials are highly sensitive to moisture in the environment. To a large extent this relates to the hygroscopicity of wood hemicelluloses. In order to increase our understanding of the effects of moisture sorption of the major wood hemicelluloses, glucomannan and xylan, model experiments using films of amorphous konjak glucomannan and rye arabinoxylan were conducted. Moisture-induced expansion and stiffness softening were characterized using dynamic mechanical testing. Both hemicelluloses showed a threshold around 5 % of moisture content above which swelling increased whereas the modulus decreased by more than 70 %. FTIR spectra, using H2O and D2O, indicated that even at high RH about 15 % of the hydroxyl groups were not accessible to hydrogen exchange by D2O. For xylan both hydroxyl groups were found to exchange in the same manner while for the glucomannan the O(6)H group seemed to be the most accessible.


Deuterium Glucomannan Hemicellulose Sorption Swelling Weakening Xylan 



Wallenberg Wood Science Centre is gratefully acknowledged for financial support.


  1. Agarwal VGW, Huber GW, Conner WC, Auerbach SM (2011) Simulating infrared spectra and hydrogen bonding in cellulose I beta at elevated temperatures. J Chem Phys 135(13):134506/134501–134506/134513CrossRefGoogle Scholar
  2. Atalla RH, Hackney JM, Uhlin I, Thompson NS (1993) Hemicelluloses as structure regulators in the aggregation of nativ cellulose. Int J Biol Macromol 15:109–112CrossRefGoogle Scholar
  3. Bergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37:151–156. doi: 10.1023/A:1013115925679 CrossRefGoogle Scholar
  4. Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal responce in crystalline I beta cellulose: a molecular dynamicstudy. J Pys Chem B 111:9138–9145CrossRefGoogle Scholar
  5. Berthold J, Rinaudo M, Salmeń L (1996) Association of water to polar groups; estimates by an adsorption model for ligno-cellulosic materials. In: Colloids and surfaces A: physicochemical and engineering aspects. pp 117–129Google Scholar
  6. Charlier L, Mazeau K (2012) Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry. J Phys Chem B 116:4163–4174. doi: 10.1021/jp300395k CrossRefGoogle Scholar
  7. Cousins WJ (1978) Young’s modulus of hemicellulose as related to moisture content. Wood Sci Technol 12:161–167CrossRefGoogle Scholar
  8. Dinwoodie JM (2000) Timber, its nature and behaviour, 2nd edn. E & FN Spon, LondonCrossRefGoogle Scholar
  9. Fengel D (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforschung 47:103–108CrossRefGoogle Scholar
  10. Hofstetter K, Hinterstoisser B, Salmen L (2006) Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose 13(2):131–145CrossRefGoogle Scholar
  11. Jarvis MC, McCann MC (2000) Macromolecular biophysics of the plant cell wall: concepts and methodology. Plant Physiol Biochem 38(1–2):1–13CrossRefGoogle Scholar
  12. Kollmann FFP, Cote WA Jr (1968) Principles of wood science and technology. Vol. I. Solid wood. Springer, BerlinCrossRefGoogle Scholar
  13. Kulasinski K, Guyer R, Keten S et al (2015) Impact of moisture adsorption on structure and physical properties of amorphous biopolymers. Macromolecules 48:2793–2800. doi: 10.1021/acs.macromol.5b00248 CrossRefGoogle Scholar
  14. Marechal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRefGoogle Scholar
  15. Max J-J, Chapados C (2009) Isotope effects in liquid water by infrared spectroscopy. III H2O and D2O spectra from 6000 to 0 cm−1. J Chem Phys 131:184505-1-13CrossRefGoogle Scholar
  16. Nishiyama Y, Isogai A, Okano T, Muller M, Chanzy H (1999) Intracrystalline deuteration of native cellulase. Macromolecules 32(6):2078–2081CrossRefGoogle Scholar
  17. Olsson A-M, Salmén L (2003) The softening behavior of hemicelluloses related to moisture. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and Technology. Amer Chemical SocietyGoogle Scholar
  18. Olsson A-M, Salmén L (2004) The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res 339:813–818. doi: 10.1016/j.carres.2004.01.005 CrossRefGoogle Scholar
  19. Pönni R, Rautkari L, Hill CAS, Vuorinen T (2014) Accessibility of hydroxyl groups in birch kraft pulps quantified by deuterium exchange in D2O vapor. Cellulose 21(3):1217–1226CrossRefGoogle Scholar
  20. Rissanen JV, Gre H, Willfo S, et al. (2014) Spruce hemicellulose for chemicals using aqueous extraction: kinetics, mass transfer, and modelingGoogle Scholar
  21. Salmén L (2015) Wood morphology and properties from molecular perspective. Anal Forest Sci 72(6):679–684CrossRefGoogle Scholar
  22. Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: Wood machining—micromechanics and fracture. Holzforschung 63:121–129. doi: 10.1515/HF.2009.011 CrossRefGoogle Scholar
  23. Salmén L, Fellers C (1989) The nature of volume hydroexpansivity of paper. J Pulp Pap Sci 15:J63–J65Google Scholar
  24. Stevanic JS, Joly C, Mikkonen KS, Pirkkalainen K, Serimaa R, Rémond C, Toriz G, Gatenholm P, Tenkanen M, Salmén L (2011) Bacterial nanocellulose-reinforced arabinoxylan films. J Appl Pol Sci 122:1030–1039CrossRefGoogle Scholar
  25. Terashima N, Kitano K, Kojima M, Yoshida M, Yamamoto H, Westermark U (2009) Nanostructural assembly of cellulose, hemicellulose and lignin in the middle layer of secondary wall of ginko tracheid. J Wood Sci 55:409–416CrossRefGoogle Scholar
  26. Venyaminov SY, Prendergast FG (1997) Water (H2O and D2O molar absorptivity in the 1000–4000 cm−1 range and quantitative infrared spectroscopy of aqueous solutions. Anal Biochem 248:234–245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Karol Kulasinski
    • 1
    • 2
    Email author
  • Lennart Salmén
    • 3
  • Dominique Derome
    • 2
  • Jan Carmeliet
    • 1
    • 2
  1. 1.Chair of Building PhysicsSwiss Federal University of Technology ZurichZurichSwitzerland
  2. 2.Laboratory for Multiscale Studies in Building Physics of Building Science and TechnologyEmpa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  3. 3.InnventiaStockholmSweden

Personalised recommendations