, Volume 21, Issue 4, pp 2357–2368 | Cite as

The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective

  • Ali Naderi
  • Tom LindströmEmail author
  • Torbjörn Pettersson
Original Paper


The rheological properties of a carboxymethylated (D.S. ≈ 0.1) nanofibrillated cellulose (NFC) were investigated at different solid contents. The critical overlap concentration was determined to be in the range between 0.04 and 0.07 % (w/w) using shear stress versus shear rate measurements. From the critical overlap concentration using the simple Mason excluded volume formalism, the apparent aspect ratio was estimated to be 75 [at a critical overlap concentration of 0.04 % (w/w)]. The aspect ratio of the NFC system was also estimated by using the Einstein–Simha equation together with the intrinsic viscosity value of the system (corrected for the electroviscous effects). The obtained value was found to be around 80, which is in good agreement with the value obtained from the excluded volume calculation. Further, by combining oscillatory measurements and the equation of Shankar et al. the apparent fibril length was determined to be 4 µm. As the production of NFC through homogenization occurs at concentrations far above the critical overlap concentration an NFC-gel is constituted by a severely entangled structure. The disentanglement of the fibrils is therefore difficult and the employed dilution method was found not to lead to fully liberated nanofibrils, which was also indicated by atomic force microscopy-imaging.


Nanofibrillated cellulose (NFC) Carboxymethylation Rheology Homogenizer Atomic force microscopy (AFM) 



Ann-Marie Runebjörk, Åsa Blademo, and Åsa Engström are thanked for their competent supporting work. Billerud-Korsnäs, Borregaard, De la Rue, Hansol, Holmen, Kemira, Korsnäs, Metsä Group, Stora Enso, Södra, UPM, and Evergreen Packaging are acknowledged for their financial support.


  1. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979. doi: 10.1016/j.carbpol.2011.08.078 CrossRefGoogle Scholar
  2. Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier JL (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686. doi: 10.1016/j.carbpol.2009.11.045 CrossRefGoogle Scholar
  3. Booth F (1950) The electroviscous effect for suspensions of solid spherical particles. Proc R Soc Lond A 203(1075):533–551. doi: 10.1098/rspa.1950.0155 CrossRefGoogle Scholar
  4. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell Univ Press, New YorkGoogle Scholar
  5. Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 3—The constitutive equation. J Chem Soc Faraday Trans 2 74:1818–1832. doi: 10.1039/f29787401818 CrossRefGoogle Scholar
  6. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemens W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogio M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  7. Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338. doi: 10.1021/la201947x
  8. Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9:1852–1863. doi: 10.1039/c2sm27223g CrossRefGoogle Scholar
  9. Fujisawa S, Saito T, Isogai A (2012) Nano-dispersion of TEMPO-oxidized cellulose/aliphatic amine salts in isopropyl alcohol. Cellulose 19:459–466. doi: 10.1007/s10570-011-9648-2 CrossRefGoogle Scholar
  10. Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546. doi: 10.1021/bm400178m CrossRefGoogle Scholar
  11. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi: 10.1021/bm801065u
  12. Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177. doi: 10.1016/j.carbpol.2012.04.069 CrossRefGoogle Scholar
  13. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813Google Scholar
  14. Ishii D, Saito T, Isogai A (2011) Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550. doi: 10.1021/bm1013876 CrossRefGoogle Scholar
  15. Ishii D, Saito T, Isogai A (2012) Correction to viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 13(5):1706. doi: 10.1021/bm300482w CrossRefGoogle Scholar
  16. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59(6):449–459. doi: 10.1007/s10086-013-1365-z CrossRefGoogle Scholar
  17. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. doi: 10.1039/c0nr00583e CrossRefGoogle Scholar
  18. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576CrossRefGoogle Scholar
  19. Iwamoto S, Lee S-H, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46(1):73–76. doi: 10.1038/pj.2013.64 CrossRefGoogle Scholar
  20. Junka K, Filpponen I, Lindström T, Laine J (2013) Titrimetric methods for the determination of surface and total charge of functionalized nanofibrillated/microfibrillated cellulose (NFC/MFC). Cellulose 1–9. doi: 10.1007/s10570-013-0043-z
  21. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  22. Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96. doi: 10.1007/12_097 CrossRefGoogle Scholar
  23. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  24. Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26(16):13450–13456. doi: 10.1021/la101795s CrossRefGoogle Scholar
  25. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: A review. Carbohydr Polym 90:735–764CrossRefGoogle Scholar
  26. Mason SG (1950) The flocculation of pulp suspensions and the formation of paper. Pulp Pap Mag Can 51:94–98Google Scholar
  27. Metzger TG (2002) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Curt R. Verlag, HannoverGoogle Scholar
  28. Mihranyan A (2010) Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119:2449–2460CrossRefGoogle Scholar
  29. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  30. Naderi A, Lindström T, Sundström J (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21(3):1561–1571. doi: 10.1007/s10570-014-0192-8
  31. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi: 10.1021/bm061215p CrossRefGoogle Scholar
  32. Pan Z, Ge J, Li W, Peng J, Qiu F (2012) Transition from polythiophene-based one-dimensional nanofibers to spherical clusters in ultrafiltration. Soft Matter 8(39):9981–9984. doi: 10.1039/c2sm26523k CrossRefGoogle Scholar
  33. Puangsin B, Fujisawa S, Kuramae R, Saito T, Isogai A (2013) TEMPO-mediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. J Polym Environ 21(2):555–563. doi: 10.1007/s10924-012-0548-9 CrossRefGoogle Scholar
  34. Rezayati CP, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20:727–740. doi: 10.1007/s10570-013-9862-1 CrossRefGoogle Scholar
  35. Saastamoinen P, Mattinen M-L, Hippi U, Nousiainen P, Sipila J, Lille M, Suurnakki A, Pere J (2012) Laccase aided modification of nanofibrillated cellulose with dodecyl gallate. BioResources 7:5749–5770Google Scholar
  36. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. doi: 10.1021/bm0703970 CrossRefGoogle Scholar
  37. Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809. doi: 10.1039/c1sm06050c CrossRefGoogle Scholar
  38. Shankar V, Pasquali M, Morse DC (2002) Theory of linear viscoelasticity of semiflexible rods in dilute solution. J Rheol 46(5):1111–1154CrossRefGoogle Scholar
  39. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13(3):842–849. doi: 10.1021/bm2017542 CrossRefGoogle Scholar
  40. Shogren RL, Peterson SC, Evans KO, Kenar JA (2011) Preparation and characterization of cellulose gels from corn cobs. Carbohydr Polym 86:1351–1357. doi: 10.1016/j.carbpol.2011.06.035 CrossRefGoogle Scholar
  41. Simha R (1940) The influence of Brownian movement on the viscosity of solutions. J Phys Chem 44:25–34CrossRefGoogle Scholar
  42. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  43. Tanaka A, Seppanen V, Houni J, Sneck A, Pirkonen P (2012) Nanocellulose characterization with mechanical fractionation. Nord Pulp Pap Res J 27:689–694. doi: 10.3183/NPPRJ-2012-27-04-p689-694 CrossRefGoogle Scholar
  44. Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 1–9. doi: 10.1007/s10570-014-0196-4
  45. Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32CrossRefGoogle Scholar
  46. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827 (Proceedings of 9th Cellulose conference, 1982, part 2)Google Scholar
  47. Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 1–12. doi: 10.1007/s10570-013-9972-9
  48. Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27:163–173CrossRefGoogle Scholar
  49. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795. doi: 10.1021/la702481v CrossRefGoogle Scholar
  50. Zhu H, Helander M, Moser C, Ståhlkranz A, Söderberg D, Henriksson G, Lindström M (2012) A novel nano cellulose preparation method and size fraction by cross flow ultra-filtration. Curr Org Chem 16(16):1871–1875. doi: 10.2174/138527212802651197 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ali Naderi
    • 1
  • Tom Lindström
    • 1
    Email author
  • Torbjörn Pettersson
    • 2
    • 3
  1. 1.Innventia ABStockholmSweden
  2. 2.Department of Fibre and Polymer TechnologyRoyal Institute of Technology (KTH)StockholmSweden
  3. 3.Wallenberg Wood Science CenterRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations