Advertisement

Cellulose

, Volume 21, Issue 1, pp 367–382 | Cite as

Hydrophobic cellulose nanopaper through a mild esterification procedure

  • Houssine SehaquiEmail author
  • Tanja Zimmermann
  • Philippe Tingaut
Original Paper

Abstract

Films of cellulose nanofibrils (CNF) (referred to as nanopaper) present a great potential in many applications due to the abundance, low environmental impact, excellent oxygen barrier properties and good mechanical performance of CNF. However, the strong hygroscopic character of the natural nanofibers limits their use in environments with high relative humidity. In this paper, we introduce a simple route for the esterification and processing of CNF with the aim of reducing their hydrophilicity, and producing hydrophobic cellulose nanopaper with reduced moisture sensitivity. The preparation steps of hydrophobic nanopapers involve vacuum filtration, solvent exchange from water to acetone, and reaction with anhydride molecules bearing different hydrophobic alkyl chains by hot pressing. Porous films having a surface area between 38 and 47 g/m2 and pore sizes in the 3–200 nm range are obtained. This method preserves the crystalline structure of native cellulose, and successfully introduces hydrophobic moieties on CNF surface as confirmed by FTIR, XPS and elemental analysis. As a result, modified nanopapers have a reduced moisture uptake, both higher surface water contact angle and wet tensile properties as compared with reference non-modified nanopaper, thus illustrating the benefit of the modification for the use of cellulose nanopaper in humid environments.

Keywords

Cellulose nanofibrils CNF Esterification Hydrophobic Nanopaper Mechanical properties 

Notes

Acknowledgments

Esther Strub, Anja Huch, Roland Hauert and Beatrice Fischer from EMPA institute are thanked for their support with SEM, contact angle, XPS and FTIR, respectively. Mr. Michael Schneider from ETH-Mikrolabor is thanked for performing elemental analysis. Markus Rueggeberg from ETH/EMPA is thanked for introduction to tensile test equipment.

Supplementary material

Supplementary material 1 (AVI 1681 kb)

10570_2013_110_MOESM2_ESM.doc (164 kb)
Supplementary material 2 (DOC 164 kb)

References

  1. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1). doi: 10.1021/la001070m
  2. Aulin C, Salazar-Alvarez G, Lindstrom T (2012) High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4(20). doi: 10.1039/c2nr31726e
  3. Banik G, Bruckle I (2010) Principles of water absorption and desorption in cellulosic materials. Restaurator 31(3–4):164–177. doi: 10.1515/rest.2010.012 Google Scholar
  4. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  5. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274CrossRefGoogle Scholar
  6. Boujemaoui A, Carlsson L, Malmstrom E, Lahcini M, Berglund L, Sehaqui H, Carlmark A (2012) Facile preparation route for nanostructured composites: surface-initiated ring-opening polymerization of epsilon-caprolactone from high-surface-area nanopaper. Acs Appl Mater Inter 4(6):3191–3198. doi: 10.1021/Am300537h CrossRefGoogle Scholar
  7. Cetin NS, Tingaut P, Oezmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9(10). doi: 10.1002/mabi.200900073
  8. Cheng Q, Wang S, Harper DP (2009) Effects of process and source on elastic modulus of single cellulose fibrils evaluated by atomic force microscopy. Compos Part A Appl Sci Manuf 40(5). doi: 10.1016/j.compositesa.2009.02.011
  9. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi: 10.1021/bm801065u CrossRefGoogle Scholar
  10. Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45(20):9101–9108. doi: 10.1021/es202223p CrossRefGoogle Scholar
  11. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge, p 56Google Scholar
  12. Gindl WA, Veigel S, Obersriebnig M, Tippelreither C, Keckes J (2012) High-modulus oriented cellulose nanopaper. In: Sources FMfR (ed). American Chemical Society, p 13Google Scholar
  13. Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9). doi: 10.1016/s0032-3861(02)00051-4
  14. Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9(7):1974–1980. doi: 10.1021/Bm8001717 CrossRefGoogle Scholar
  15. Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(epsilon-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18(41):5002–5010. doi: 10.1039/B809212e CrossRefGoogle Scholar
  16. Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. doi: 10.1016/j.eurpolymj.2007.05.038 CrossRefGoogle Scholar
  17. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi: 10.1021/bm800038n CrossRefGoogle Scholar
  18. Ho TTT, Ko YS, Zimmermann T, Geiger T, Caseri W (2012a) Processing and characterization of nanofibrillated cellulose/layered silicate systems. J Mater Sci 47(10):4370–4382. doi: 10.1007/s10853-012-6291-8 CrossRefGoogle Scholar
  19. Ho TTT, Zimmermann T, Ohr S, Caseri WR (2012b) Composites of cationic nanofibrillated cellulose and layered silicates: water vapor barrier and mechanical properties. Acs Appl Mater Inter 4(9):4832–4840. doi: 10.1021/am3011737 CrossRefGoogle Scholar
  20. Johnson RK, Zink-Sharp A, Glasser WG (2011) Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose 18(6). doi: 10.1007/s10570-011-9579-y
  21. Kulachenko A, Denoyelle T, Galland S, Lindstrom SB (2012) Elastic properties of cellulose nanopaper. Cellulose 19(3):793–807. doi: 10.1007/s10570-012-9685-5 CrossRefGoogle Scholar
  22. Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15(4):571–580. doi: 10.1007/s10570-008-9200-1 CrossRefGoogle Scholar
  23. Littunen K, Hippi U, Johansson L-S, Osterberg M, Tammelin T, Laine J, Seppala J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84(3):1039–1047. doi: 10.1016/j.carbpol.2010.12.064 CrossRefGoogle Scholar
  24. Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12(3):633–641. doi: 10.1021/bm101296z CrossRefGoogle Scholar
  25. Missoum K, Belgacem MN, Barnes J-P, Brochier-Salon M-C, Bras J (2012) Nanofibrillated cellulose surface grafting in ionic liquid. Soft Matter 8(32). doi: 10.1039/c2sm25691f
  26. Nelson M, O’Connor R (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341CrossRefGoogle Scholar
  27. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598. doi: 10.1002/adma.200803174 CrossRefGoogle Scholar
  28. Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. Acs Appl Mater Inter 5(11):4640–4647. doi: 10.1021/am401046x CrossRefGoogle Scholar
  29. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi: 10.1021/bm061215p CrossRefGoogle Scholar
  30. Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499. doi: 10.1039/b810371b CrossRefGoogle Scholar
  31. Page DH (1969) A theory for tensile strength of paper. Tappi 52(4):674Google Scholar
  32. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):1–10 Google Scholar
  33. Rodionova G, Lenes M, Eriksen O, Gregersen O (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1). doi: 10.1007/s10570-010-9474-y
  34. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66(8):1739–1758CrossRefGoogle Scholar
  35. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. doi: 10.1021/bm0703970 CrossRefGoogle Scholar
  36. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10(7):1992–1996. doi: 10.1021/bm900414t CrossRefGoogle Scholar
  37. Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809. doi: 10.1039/c1sm06050c CrossRefGoogle Scholar
  38. Sehaqui H, Liu AD, Zhou Q, Berglund LA (2010a) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi: 10.1021/bm100490s CrossRefGoogle Scholar
  39. Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010b) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824–1832. doi: 10.1039/b927505c CrossRefGoogle Scholar
  40. Sehaqui H, Allais M, Zhou Q, Berglund LA (2011a) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Compos Sci Technol 71(3):382–387. doi: 10.1016/j.compscitech.2010.12.007 CrossRefGoogle Scholar
  41. Sehaqui H, Berglund LA, Zhou Q (2011b) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638–3644Google Scholar
  42. Sehaqui H, Zhou Q, Berglund LA (2011c) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599. doi: 10.1016/j.compscitech.2011.07.003 CrossRefGoogle Scholar
  43. Sehaqui H, Zhou Q, Berglund LA (2011d) Nanostructured biocomposites of high toughness-a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7(16):7342–7350. doi: 10.1039/c1sm05325f CrossRefGoogle Scholar
  44. Sehaqui H, Morimune S, Nishino T, Berglund LA (2012a) Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning. Biomacromolecules 13(11). doi: 10.1021/bm301105s
  45. Sehaqui H, Mushi NE, Morimune S, Salajkova M, Nishino T, Berglund LA (2012b) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. Acs Appl Mater Interfaces 4(2):1043–1049. doi: 10.1021/am2016766 CrossRefGoogle Scholar
  46. Sehaqui H, Zhou Q, Berglund L (2013) Nanofibrillated cellulose for enhancement of strength in high-density paper structures. Nord Pulp Pap Res J 28(2):182CrossRefGoogle Scholar
  47. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432. doi: 10.1021/Bm801193d CrossRefGoogle Scholar
  48. Sousa M, Mano J (2013) Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing. Cellulose 20(5):2185–2190. doi: 10.1007/s10570-013-9991-6 CrossRefGoogle Scholar
  49. Svagan AJ, Samir M, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20(7):1263–1269. doi: 10.1002/adma.200701215 CrossRefGoogle Scholar
  50. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47(3):291–294CrossRefGoogle Scholar
  51. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464CrossRefGoogle Scholar
  52. Tingaut P, Hauert R, Zimmermann T (2011) Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. J Mater Chem 21(40):16066–16076. doi: 10.1039/C1jm11620g CrossRefGoogle Scholar
  53. Tingaut P, Zimmermann T, Sebe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22(38):20105–20111. doi: 10.1039/C2jm32956e CrossRefGoogle Scholar
  54. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827Google Scholar
  55. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155. doi: 10.1002/adma.200400597 CrossRefGoogle Scholar
  56. Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761. doi: 10.1002/adem.200400097 CrossRefGoogle Scholar
  57. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093. doi: 10.1016/j.carbpol.2009.10.045 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Houssine Sehaqui
    • 1
    Email author
  • Tanja Zimmermann
    • 1
  • Philippe Tingaut
    • 1
  1. 1.Applied Wood Materials LaboratoryEmpa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland

Personalised recommendations