, Volume 20, Issue 1, pp 467–483 | Cite as

Photo-attaching functional polymers to cellulose fibers for the design of chemically modified paper

  • Alexander Böhm
  • Melanie Gattermayer
  • Christian Trieb
  • Samuel Schabel
  • Dirk Fiedler
  • Frank Miletzky
  • Markus BiesalskiEmail author
Original Paper


We introduce a novel approach for preparing polymer-modified and chemically microstructured paper substrates by a photo-chemical attachment of functional polymers to cellulose microfibers inside model filter papers. Poly(methyl methacrylate), PMMA copolymers, which carry a defined amount of photo-reactive benzophenone functional groups, are adsorbed to paper substrates from solution by a simple dip coating process, followed by covalent attachment of the physisorbed polymers through UV-light irradiation. Non-bound macromolecules can be removed from paper sheets by simple solvent extraction, and the resulting polymer-modified substrates were analysed with respect to chemical identity, attached polymer mass, and homogeneity of the polymer attachment. The amount of paper-attached polymers can be conveniently controlled in a wide range from a few mg/g cellulose fiber up to several tenth of mg/g cellulose fiber, by adjusting the polymer concentration in the coating solution. Polymers are being attached by photo-chemical means, and chemical micro patterns on paper can be designed by lithographical means. In first proof-of-concept studies, millimeter-scale channels were prepared that can be used to control fluid penetration by capillary actions. Because of the modularity in the design of photo-reactive polymers, a number of different chemically microstructured papers can be envisioned which may become potentially interesting in lab-on-paper devices.


Cellulose fiber Polymer grafting Lithography Microfluidics Functional paper Benzophenone Polymer networks 



We thank Martina Ewald and Heike Herbert for various technical support. A. Böhm likes to thank the Excellency Cluster “Center of Smart Interfaces, CSI” for a research fellowship. Financial support by the Hessian excellence initiative LOEWE within the cluster SOFT CONTROL, and from the Verband der Papierfabriken (VDP), grant No. INFOR137, is gratefully acknowledged. Finally, we thank Jürgen Rühe and Oswald Prucker for valuable discussions.

Supplementary material

10570_2012_9798_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (PDF 3080 kb)


  1. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multi analyte chemical sensing paper. Anal Chem 80:6928–6934CrossRefGoogle Scholar
  2. Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paper fluidic immuno-chemical sensing device. Anal Bioanal Chem 398:885–893CrossRefGoogle Scholar
  3. Beines PW, Klosterkamp I, Menges B, Jonas U, Knoll W (2007) Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers. Langmuir 23:2231–2238CrossRefGoogle Scholar
  4. Belardi J, Schorr N, Prucker O, Rühe J (2011) Artificial cilia: generation of magnetic actuators in microfluidic systems. Adv Funct Mater 21:3314–3320CrossRefGoogle Scholar
  5. Berchtold B (2005) Oberflächengebundene Polymernetzwerke zur Re-Endothelialisierung von porcinen Herzklappenbioprothesen. Dissertation, Albert-Ludwigs-Universität Freiburg im BreisgauGoogle Scholar
  6. Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define micro channels in paper. Anal Chem 80:3387–3392CrossRefGoogle Scholar
  7. Carlmark A, Malmström E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901CrossRefGoogle Scholar
  8. Carlmark A, Malmström E (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4:1740–1745CrossRefGoogle Scholar
  9. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based micro fluidics. Anal Chem 81:7091–7095CrossRefGoogle Scholar
  10. Citterio D, Maejima K, Suzuki K (2011) Voc-free inkjet patterning method for the fabrication of “paper fluidic” sensing devices. microTAS 2011; Chem Biol Microsyst Soc; SeattleGoogle Scholar
  11. Daly WH, Evenson TS, Iacono ST, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation. Macromol Symp 174:155–163CrossRefGoogle Scholar
  12. Freidank D (2005) 3D-DNA-Chips: oberflächengebundene funktionelle Polymernetzwerke als Matrix für Nukleinsäure-Microarrays. Dissertation, Albert-Ludwigs-Universität Freiburg im BreisgauGoogle Scholar
  13. Junk MJN, Berger R, Jonas U (2010) Atomic force spectroscopy of thermo responsive photo-cross-linked hydrogel films. Langmuir 26:7262–7269CrossRefGoogle Scholar
  14. Klasner S, Price A, Hoeman K, Wilson R, Bell K, Culbertson C (2010) Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal Bioanal Chem 397:1821–1829CrossRefGoogle Scholar
  15. Leung V, Shehata AAM, Filipe CDM, Pelton R (2010) Streaming potential sensing in paper-based microfluidic channels. Colloids Surf A 364:16–18CrossRefGoogle Scholar
  16. Li X, Tian J, Nguyen T, Shen W (2008) Paper-based microfluidic devices by plasma treatment. Anal Chem 80:9131–9134CrossRefGoogle Scholar
  17. Li X, Tian J, Shen W (2010) Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17:649–659CrossRefGoogle Scholar
  18. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based micro fluidics: current status and future trends. Biomicrofluidics 6:011301CrossRefGoogle Scholar
  19. Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based micro fluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500CrossRefGoogle Scholar
  20. Lucas R (1918) Über das Zeitgesetz des Kapillaren Aufstiegs von Flüssigkeiten. Colloid Polym Sci 23:15–22Google Scholar
  21. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320CrossRefGoogle Scholar
  22. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U.S.A. 105:19606–19611CrossRefGoogle Scholar
  23. Moschallski M, Baader J, Prucker O, Rühe J (2010) Printed protein microarrays on unmodified plastic substrates. Anal Chim Acta 671:92–98CrossRefGoogle Scholar
  24. Murata H, Chang BJ, Prucker O, Dahm M, Rühe J (2004) Polymeric coatings for biomedical devices. Surf Sci 570:111–118CrossRefGoogle Scholar
  25. Nyström D, Lindqvist J, Östmark E, Hult A, Malmström E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 3594–3596Google Scholar
  26. Olkkonen J, Lehtinen K, Erho T (2010) Flexographically printed fluidic structures in paper. Anal Chem 82:10246–10250CrossRefGoogle Scholar
  27. Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372CrossRefGoogle Scholar
  28. Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9:91–99CrossRefGoogle Scholar
  29. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRefGoogle Scholar
  30. Shen J, Song Z, Qian X, Ni Y (2011) A review on use of fillers in cellulosic paper for functional applications. Ind Eng Chem Res 50:661–666CrossRefGoogle Scholar
  31. Siegel AC, Phillips ST, Wiley BJ, Whitesides GM (2009) Thin, light, foldable thermo chromic displays on paper. Lab Chip 9:2775–2781CrossRefGoogle Scholar
  32. Toomey R, Freidank D, Rühe J (2004) Swelling behavior of thin, surface-attached polymer networks. Macromolecules 37:882–887CrossRefGoogle Scholar
  33. Tsubokawa N, Iida T, Takayama T (2000) Modification of cellulose powder surface by grafting of polymers with controlled molecular weight and narrow molecular weight distribution. J Appl Polym Sci 75:515–522CrossRefGoogle Scholar
  34. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Alexander Böhm
    • 1
  • Melanie Gattermayer
    • 1
  • Christian Trieb
    • 2
  • Samuel Schabel
    • 2
  • Dirk Fiedler
    • 3
  • Frank Miletzky
    • 3
  • Markus Biesalski
    • 1
    Email author
  1. 1.Department of Chemistry, Macromolecular Chemistry and Paper Chemistry, and Center of Smart Interfaces (CSI)Technische Universität DarmstadtDarmstadtGermany
  2. 2.Department of Mechanical Engineering, Paper TechnologyTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Department of Functionalized Surfaces, Surface FinishingPapiertechnische Stiftung (PTS)HeidenauGermany

Personalised recommendations