Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity
- 1.3k Downloads
- 89 Citations
Abstract
Cotton was cationized by exhaustion method using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHPTAC) as a cation-generating agent. Adsorption of silver nanoparticles on normal and cationized cotton was studied by exhaustion method at temperatures of 80°C and 100°C. Two exhaustion baths were used, containing nanosilver colloidal solutions stabilized by two different stabilizers and various concentrations of silver nanoparticles. Fourier-transform infrared (FT-IR) spectra of normal and cationized samples confirmed the existence of quaternary ammonium groups on cationized cellulose fibers. X-ray diffraction (XRD) patterns showed that crystallinity of the modified cellulose fibers was decreased. Scanning electron microscope (SEM) images revealed that the surface of the modified cotton was rougher than that of normal cotton. In addition, SEM images showed the presence of silver nanoparticles on the surface of treated fabric samples. The amount of silver particles adsorbed on the fabric samples was determined using inductively coupled plasma-optical emission spectrometer. Antibacterial tests were performed against Escherichia coli bacteria as an indication of antibacterial effect of samples. Cationized cotton samples adsorbed more silver nanoparticles and then had greater ability to inhibit bacteria.
Keywords
Antibacterial Cationization Cotton Exhaustion Modification Silver nanoparticlesReferences
- Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790. doi: https://doi.org/10.1021/la703766c CrossRefGoogle Scholar
- Chen W, Zhao S, Wang X (2004) Improving the color yield of ink-jet printing on cationized cotton. Text Res J 74:68–71. doi: https://doi.org/10.1177/004051750407400112 CrossRefGoogle Scholar
- Cunha AG, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Orblin E, Fardim P (2007) Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers. J Colloid Interface Sci 316:360–366. doi: https://doi.org/10.1016/j.jcis.2007.09.002 CrossRefGoogle Scholar
- Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloid Surf A 289:105–109. doi: https://doi.org/10.1016/j.colsurfa.2006.04.012 CrossRefGoogle Scholar
- Fang K, Wang C, Zhang X, Xu Y (2005) Dyeing of cationized cotton using nanoscale pigment dispersions. Color Technol 121:325–328. doi: https://doi.org/10.1111/j.1478-4408.2005.tb00377.x CrossRefGoogle Scholar
- Ghule K, Ghule AV, Chen BJ, Ling YC (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8:1034–1041. doi: https://doi.org/10.1039/b605623g CrossRefGoogle Scholar
- Gordon S, Hsieh YL (2007) Cotton: science and technology. Woodhead, CambridgeGoogle Scholar
- Hashem MM (2006) Development of a one-stage process for pretreatment and cationisation of cotton fabric. Color Technol 122:135–144. doi: https://doi.org/10.1111/j.1478-4408.2006.00022.x CrossRefGoogle Scholar
- Hashem M, Hauser P, Smith B (2003) Ammonium chloride reaction efficiency for cellulose cationization using 3-chloro-2- hydroxypropyl trimethyl ammonium chloride. Text Res J 73(11):1017–1023. doi: https://doi.org/10.1177/004051750307301113 CrossRefGoogle Scholar
- Hoefnagels HF, Wu D, With G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23:13158–13163. doi: https://doi.org/10.1021/la702174x CrossRefGoogle Scholar
- Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14:615–623. doi: https://doi.org/10.1007/s10570-007-9126-z CrossRefGoogle Scholar
- Jeong SH, Yeo SY, Yi SC (2005) The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mater Sci 40:5407–5411. doi: https://doi.org/10.1007/s10853-005-4339-8 CrossRefGoogle Scholar
- Jones AG (2002) Crystallization process systems. Butterworth-Heinemann, LondonCrossRefGoogle Scholar
- Kanik M, Hauser PJ (2004) Printing cationized cotton with direct dyes. Text Res J 74(1):43–50. doi: https://doi.org/10.1177/004051750407400108 CrossRefGoogle Scholar
- Kantouch A, Kantouch F, El-Sayed H (2006) Surface modification of wool fabric for printing with acid and reactive dyes. Color Technol 122:213–216. doi: https://doi.org/10.1111/j.1478-4408.2006.00030.x CrossRefGoogle Scholar
- Karahan HA, Ozdogan E, Karahan A, Ayhan H, Seventekin N (2008) Effects of atmospheric plasma treatment on the dyeability of cotton fabrics by acid dyes. Color Technol 124:106–110. doi: https://doi.org/10.1111/j.1478-4408.2008.00129.x CrossRefGoogle Scholar
- Kim YH, Sun G (2002) Functional finishing of acrylic and Cationic dyeable fabrics: intermolecular interactions. Text Res J 72(12):1052–1056. doi: https://doi.org/10.1177/004051750207201209 CrossRefGoogle Scholar
- Kumar R, Munstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088. doi: https://doi.org/10.1016/j.biomaterials.2004.05.030 CrossRefGoogle Scholar
- Lee CJ, Karim MR, Lee MS (2007) Synthesis and characterization of silver/thiophene nanocomposites by UV-irradiation method. Mater Lett 61:2675–2678. doi: https://doi.org/10.1016/j.matlet.2006.10.021 CrossRefGoogle Scholar
- Liu ZT, Yang Y, Zhang L, Liu ZW, Xiong H (2007) Study on the cationic modification and dyeing of ramie fiber. Cellulose 14:337–345. doi: https://doi.org/10.1007/s10570-007-9117-0 CrossRefGoogle Scholar
- Montazer M, Malek RMA, Rahimi A (2007) Salt free reactive dyeing of cationized cotton. Fiber Polym 8(6):608–612. doi: https://doi.org/10.1007/BF02875997 CrossRefGoogle Scholar
- Mughal MJ, Naeem M, Aleem A, Saeed R, Ahmed K (2007) Effect of cationising agent on the conventional reactive dyeing of cotton. Color Technol 124:62–65. doi: https://doi.org/10.1111/j.1478-4408.2007.00122.x CrossRefGoogle Scholar
- Radosta S, Vorwerg W, Ebert A, Begli AH, Grülc D, Wastyn M (2004) Properties of low-substituted cationic starch derivatives prepared by different derivatisation processes. Starch/Stärke 56:277–287CrossRefGoogle Scholar
- Rong L, Feng G (2006) Dyeing properties of PECH-amine cationized cotton with acid dyes. J Appl Polym Sci 100:3302–3306. doi: https://doi.org/10.1002/app.23155 CrossRefGoogle Scholar
- Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808. doi: https://doi.org/10.1021/ja061442z CrossRefGoogle Scholar
- Shahverdi AR, Fakhimi A, Shaverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3:168–171CrossRefGoogle Scholar
- Sharif S, Ahmad S, Izhar-ul-Haq MM (2007) Role of quaternary ammonium salts in improving the fastness properties of anionic dyes on cellulose fibres. Color Technol 123:8–17. doi: https://doi.org/10.1111/j.1478-4408.2006.00053.x CrossRefGoogle Scholar
- Sharif S, Ahmad S, Siddiqui WA (2008) Effects of cationic fixing agents on the direct dyeing properties of cotton fabrics. Color Technol 124:180–185. doi: https://doi.org/10.1111/j.1478-4408.2008.00139.x CrossRefGoogle Scholar
- Shervani Z, Ikushima Y, Sato M, Kawanami H, Hakuta Y, Yokoyama T, Nagase T, Kuneida H, Aramaki K (2008) Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym Sci 286:403–410. doi: https://doi.org/10.1007/s00396-007-1784-8 CrossRefGoogle Scholar
- Sun Y, Lin L, Pang C, Deng H, Peng H, Li L, He B, Liu S (2007) Hydrolysis of cotton fiber cellulose in formic acid. Energy Fuels 21:2386–2389. doi: https://doi.org/10.1021/ef070134z CrossRefGoogle Scholar
- Toth J (2001) Adsorption: theory, modeling, and analysis. Marcel Dekker, New YorkGoogle Scholar
- Vankar PS, Shanker R (2008) Ecofriendly ultrasonic natural dyeing of cotton fabric with enzyme pretreatments. Desalination 230:62–69. doi: https://doi.org/10.1016/j.desal.2007.11.016 CrossRefGoogle Scholar
- Wang H, Wang J, Hong J, Wei Q, Gao W, Zhu Z (2007) Preparation and characterization of silver nanocomposite textile. J Coat Technol Res 4(1):101–106. doi: https://doi.org/10.1007/s11998-007-9001-8 CrossRefGoogle Scholar
- Weibin X, Jinxin H, Shuilin C, Guoqiang C, Taozhi P (2007) Modification of silk with aminated polyepichlorohydrin to improve dyeability with reactive dyes. Color Technol 123:74–79. doi: https://doi.org/10.1111/j.1478-4408.2007.00065.x CrossRefGoogle Scholar
- Wu M, Kuga S (2006) Cationization of cellulose fabrics by polyallylamine binding. J Appl Polym Sci 100:1668–1672. doi: https://doi.org/10.1002/app.22895 CrossRefGoogle Scholar
- Xie K, Hou A, Sun Y (2007) Chemical and morphological structures of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr Polym 70:285–290. doi: https://doi.org/10.1016/j.carbpol.2007.04.005 CrossRefGoogle Scholar
- Xie K, Hou A, Wang X (2008) Dyeing and diffusion properties of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr Polym 72:646–651. doi: https://doi.org/10.1016/j.carbpol.2007.08.007 CrossRefGoogle Scholar
- Yin C, Li J, Xu Q, Peng Q, Liu Y, Shen X (2007) Chemical modification of cotton cellulose in supercritical carbon dioxide: synthesis and characterization of cellulose carbamate. Carbohydr Polym 67:147–154. doi: https://doi.org/10.1016/j.carbpol.2006.05.010 CrossRefGoogle Scholar
- Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photochem Photobiol A 161:27–34. doi: https://doi.org/10.1016/S1010-6030(03)00204-1 CrossRefGoogle Scholar
- Zhang S, Ma W, Ju B, Dang N, Zhang M, Wu S, Yang J (2005) Continuous dyeing of cationised cotton with reactive dyes. Color Technol 121:183–186. doi: https://doi.org/10.1111/j.1478-4408.2005.tb00270.x CrossRefGoogle Scholar
- Zhang M, Ju BZ, Zhang SF, Ma W, Yang JZ (2007) Synthesis of cationic hydrolyzed starch with high DS by dry process and use in salt-free dyeing. Carbohydr Polym 69:123–129. doi: https://doi.org/10.1016/j.carbpol.2006.09.011 CrossRefGoogle Scholar