Advertisement

Cellulose

, Volume 16, Issue 6, pp 989–997 | Cite as

Temperature-induced chiral nematic phase changes of suspensions of poly(N,N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals

  • Jie Yi
  • Qunxing Xu
  • Xuefei Zhang
  • Hailiang ZhangEmail author
Article

Abstract

Temperature-induced copolymers of poly(N,N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals (PDMAEMA-grafted CNC) were synthesized by surface-initiated atom transfer radical polymerization (ATRP). The graft copolymers were characterized by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC). The size of the original CNC was 10–40 nm in width and 100–400 nm in length, as characterized by atomic force microscopy (AFM). The liquid-crystalline properties of the graft copolymers were investigated by using polarizing optical microscopy (POM). The graft copolymers exhibited fingerprint texture in lyotropic state. The temperature-induced fingerprint texture changes of PDMAEMA-grafted CNC aqueous suspensions were investigated at various temperatures. With increasing temperature, the spacing of the fingerprint lines decreases. Temperature-induced changes of PDMAEMA polymer chains result in changes of fingerprint texture.

Keywords

Cellulose nanocrystals (CNC) Poly(N,N-dimethylaminoethyl methacrylate) Thermosensitive polymer Chiral nematic phase Liquid crystals 

Notes

Acknowledgments

This work was financially supported by the New Century Excellent Talents in University (NCET-05-0707), the Scientific Research Fund of Hunan Provincial Education Department (06A068), the Cultivation Found of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 207075), the National Nature Science Foundation of China (20874082), and the Open Project Program of the Key Laboratory of Low-Dimensional Materials and Application Technology of the Ministry of Education (KF0611).

References

  1. Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496. doi: https://doi.org/10.1021/la0102455 CrossRefGoogle Scholar
  2. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27. doi: https://doi.org/10.1021/la001070m CrossRefGoogle Scholar
  3. Ballauff M (1989) Stiff-chain polymers-structure, phase behavior, and properties. Angew Chem Int Ed Engl 28(3):253–267. doi: https://doi.org/10.1002/anie.198902533 CrossRefGoogle Scholar
  4. Bouteiller L, Barny PL (1996) Polymer-dispersed liquid crystals: preparation, operation and application. Liq Crystallogr 21:157–174. doi: https://doi.org/10.1080/02678299608032820 CrossRefGoogle Scholar
  5. Chen X, Randall DP, Perruchot C, Watts JF, Patten TE, Werne T, Armes SP (2003) Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization. J Colloid Interface Sci 257:56–64. doi: https://doi.org/10.1016/S0021-9797(02)00014-0 CrossRefGoogle Scholar
  6. de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787. doi: https://doi.org/10.1002/marc.200300268 CrossRefGoogle Scholar
  7. Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082. doi: https://doi.org/10.1021/la950133b CrossRefGoogle Scholar
  8. Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32. doi: https://doi.org/10.1023/A:1009260511939 CrossRefGoogle Scholar
  9. Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem Eur J 7(9):1831–1835. doi: https://doi.org/10.1002/1521-3765(20010504)7:9<1831::AID-CHEM1831>3.0.CO;2-S CrossRefGoogle Scholar
  10. Flory PJ (1956) Phase equilibria in solutions of rod-like particles. Proc R Soc Lond A 234:73–89CrossRefGoogle Scholar
  11. Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer (Guildf) 43(9):2645–2651. doi: https://doi.org/10.1016/S0032-3861(02)00051-4 CrossRefGoogle Scholar
  12. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212. doi: https://doi.org/10.1021/la9913957 CrossRefGoogle Scholar
  13. Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6(6):3160–3165. doi: https://doi.org/10.1021/bm050479t CrossRefGoogle Scholar
  14. Lattuada M, Hatton TA (2007) Functionalization of monodisperse magnetic nanoparticles. Langmuir 23:2158–2168. doi: https://doi.org/10.1021/la062092x CrossRefGoogle Scholar
  15. Lerdkanchanaporn S, Dollimore D, Alexander KS (1998) A simultaneous TG-DTA study of the degradation in nitrogen of cellulose to carbon, alone and in the presence of other pharmaceutical excipients. Thermochim Acta 324:25–32. doi: https://doi.org/10.1016/S0040-6031(98)00520-6 CrossRefGoogle Scholar
  16. Li DJ, Zhao B (2007) Temperature-induced transport of thermosensitive hairy hybrid nanoparticles between aqueous and organic phases. Langmuir 23:2208–2217. doi: https://doi.org/10.1021/la0628165 CrossRefGoogle Scholar
  17. Li DJ, Jones GL, Dunlap JR, Hua FJ, Zhao B (2006) Thermosensitive hairy hybrid nanoparticles synthesized by surface-initiated atom transfer radical polymerization. Langmuir 22:3344–3351. doi: https://doi.org/10.1021/la053103+ CrossRefGoogle Scholar
  18. Liu T, Jia S, Kowalewski T, Matyjaszewski K, Casado-Portilla R, Belmont J (2006) Water-dispersible carbon black nanocomposites prepared by surface-initiated atom transfer radical polymerization in protic media. Macromolecules 39:548–556. doi: https://doi.org/10.1021/ma051659y CrossRefGoogle Scholar
  19. Meuer S, Oberle P, Theato P, Tremel W, Zentel R (2007) Liquid crystalline phases from polymer-functionalized TiO2 nanorods. Adv Mater 19:2073–2078. doi: https://doi.org/10.1002/adma.200602516 CrossRefGoogle Scholar
  20. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8:313–344. doi: https://doi.org/10.1163/156855401753255422 CrossRefGoogle Scholar
  21. Noël C, Navard P (1991) Liquid crystal polymers. Prog Polym Sci 16:55–110. doi: https://doi.org/10.1016/0079-6700(91)90007-8 CrossRefGoogle Scholar
  22. Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci 51:627–659. doi: https://doi.org/10.1111/j.1749-6632.1949.tb27296.x CrossRefGoogle Scholar
  23. Orts WJ, Godbout L, Marchessault RH, Revol J-F (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725. doi: https://doi.org/10.1021/ma9711452 CrossRefGoogle Scholar
  24. Plackett D, Jankova K, Egsgaard H, Hvilsted S (2005) Modification of jute fibers with polystyrene via atom transfer radical polymerization. Biomacromolecules 6:2474–2484. doi: https://doi.org/10.1021/bm050184f CrossRefGoogle Scholar
  25. Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172. doi: https://doi.org/10.1016/S0141-8130(05)80008-X CrossRefGoogle Scholar
  26. Revol J-F, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Crystallogr 16:127–134. doi: https://doi.org/10.1080/02678299408036525 CrossRefGoogle Scholar
  27. Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9:91–99. doi: https://doi.org/10.1021/bm700849j CrossRefGoogle Scholar
  28. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi: https://doi.org/10.1021/bm0493685 CrossRefGoogle Scholar
  29. Stepanyan R, Subbotin A, Knaapila M, Ikkala O, ten Brinke G (2003) Self-organization of hairy-rod polymers. Macromolecules 36:3758–3763. doi: https://doi.org/10.1021/ma0259665 CrossRefGoogle Scholar
  30. Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061. doi: https://doi.org/10.1021/bm049291k CrossRefGoogle Scholar
  31. Varma AJ, Chavan VB (1995) Thermal properties of oxidized cellulose. Cellulose 2:41–49Google Scholar
  32. Wang L, Huang Y (2004) Structural characteristics and defects in ethyl-cyanoethyl cellulose/acrylic acid cholesteric liquid crystalline system. Macromolecules 37:303–309. doi: https://doi.org/10.1021/ma0344893 CrossRefGoogle Scholar
  33. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer (Guildf) 48:3486–3493. doi: https://doi.org/10.1016/j.polymer.2007.03.062 CrossRefGoogle Scholar
  34. Wetering P, Cherng JY, Talsma H, Crommelin DJA, Hennink WE (1998) 2-(Dimethylamino)ethyl methacrylate based (co)polymers as gene transfer agents. J Control Release 53:145–153. doi: https://doi.org/10.1016/S0168-3659(97)00248-4 CrossRefGoogle Scholar
  35. Zhang MM, Liu L, Zhao HY, Yang Y, Fu GQ, He BL (2006) Double-responsive polymer brushes on the surface of colloid particles. J Colloid Interface Sci 301:85–91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jie Yi
    • 1
    • 4
  • Qunxing Xu
    • 1
  • Xuefei Zhang
    • 1
    • 3
  • Hailiang Zhang
    • 1
    • 2
    Email author
  1. 1.College of ChemistryXiangtan UniversityXiangtanPeople’s Republic of China
  2. 2.Key Laboratory of Polymeric Materials & Application Technology of Hunan ProvinceXiangtan UniversityXiangtanPeople’s Republic of China
  3. 3.Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan ProvinceXiangtan UniversityXiangtanPeople’s Republic of China
  4. 4.Key Laboratory of Low-Dimensional Materials and Application Technology of Ministry of EducationXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations