, Volume 16, Issue 6, pp 943–957 | Cite as

The structure of the complex of cellulose I with ethylenediamine by X-ray crystallography and cross-polarization/magic angle spinning 13C nuclear magnetic resonance

  • Masahisa Wada
  • Laurent Heux
  • Yoshiharu Nishiyama
  • Paul LanganEmail author
Original Paper


X-ray crystallographic and cross-polarization/magic angle spinning 13C nuclear magnetic resonance techniques have been used to study an ethylenediamine (EDA)-cellulose I complex, a transient structure in the cellulose I to cellulose IIII conversion. The crystal structure (space group P21; a = 4.546 Å, b = 11.330 Å, c = 10.368 Å and γ = 94.017°) corresponds to a one-chain unit cell with one glucosyl residue in the asymmetric unit, a gt conformation for the hydroxymethyl group, and one EDA molecule per glucosyl residue. Unusually, there are no O–H···O hydrogen bonds between the cellulose chains; the chains are arranged in hydrophobic stacks, stabilized by hydrogen bonds to the amine groups of bridging EDA molecules. This new structure is an example of a complex in which the cellulose chains are isolated from each other, and provides a number of insights into the structural pathway followed during the conversion of cellulose I to cellulose IIII through EDA treatment.


X-ray crystallography NMR Cellulose Ethylenediamine 



We thank beam line BL38B1 at the SPring-8, Japan, for use of facilities. MW was supported by a Grant-in-Aid for Scientific Research (18780131). This study was partly funded by the French Agence Nationale de la Recherche. PL was supported in part by the Office of Biological and Environmental Research of the Department of Energy, a grant from the National Institute of Medical Sciences of the National Institutes of Health (1R01GM071939-01), and a Laboratory Directed Research and Development grant from Los Alamos National Laboratory (20080001DR).


  1. Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native cellulose. Solid State Nucl Magn Reson 15:1–19CrossRefGoogle Scholar
  2. Chanzy H, Henrissat B, Vuong R, Revol JF (1986) Structural changes of cellulose crystals during the reversible transformation cellulose I–cellulose III in Valonia. Holzforschung 40:25–30Google Scholar
  3. Chanzy H, Henrissat B, Vincendon M, Tanner S, Belton PS (1987) Solid-state C13 NMR and electron microscopy study on the reversible cellulose I–cellulose IIII transformation in Valonia. Carbohydr Res 160:1–11CrossRefGoogle Scholar
  4. Clark GL, Parker EA (1937) An X-ray diffraction study of the action of liquid ammonia on cellulose and its derivatives. J Phys Chem 41:777–786CrossRefGoogle Scholar
  5. Creely JJ, Segal L, Loeb L (1959) An X-ray study of new cellulose complexes with diamines containing 3, 5, 6, 7, and 8 carbon atoms. J Polym Sci 36:205–214CrossRefGoogle Scholar
  6. Cremer D, Pople J (1975) General definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358CrossRefGoogle Scholar
  7. da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425CrossRefGoogle Scholar
  8. Davis WE, Barry AJ, Peterson FC, King AJ (1943) X-ray studies of reactions of cellulose in non-aqueous systems. II. Interaction of cellulose and primary amines. J Am Chem Soc 65:1294–1299CrossRefGoogle Scholar
  9. Detroy RW, Lindenfelser LA, Sommer S, Orton WL (1981) Bioconversion of wheat straw to ethanol: chemical modification, enzymatic hydrolysis, and fermentation. Biotechnol Bioeng 23:1527–1536CrossRefGoogle Scholar
  10. Dudley RL, Fyfe CA, Stephenson PJ, Deslandes Y, Hamer GK, Marchessault RH (1983) High resolution 13C Cp/MAS spectra of solid cellulose oligomers and the structure of cellulose II. J Am Chem Soc 105:2469–2472CrossRefGoogle Scholar
  11. French AD, Howley PD (1989) Computer models of cellulose. In: Schuerch C (ed) Cellulose and wood, chemistry and technology, Wiley, New-York, p 164Google Scholar
  12. Henrissat B, Marchessault RH, Taylor MG, Chanzy H (1987) A C13 NMR study of the cellulose I ethylenediamine complex. Polym Commun 28:113–115Google Scholar
  13. Horii F, Yamamoto H, Kitamaru R, Tanahashi M, Higuchi T (1987) Transformation of native cellulose crystals induced by saturated steam at high temperatures. Macromolecules 20:2946–2949CrossRefGoogle Scholar
  14. Igarashi K, Wada M, Samejima M (2007) Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J 274:1785–1792CrossRefGoogle Scholar
  15. Imai T, Sugiyama J (1998) Nanodomains of I-alpha and I-beta cellulose in algal microfibrils. Macromolecules 31:6275–6279CrossRefGoogle Scholar
  16. Jahan MS, Farouqui FI (2000) Pulping of whole jute plant (Corchorus capsularis) by soda-amine process. Holzforschung 54:625–630CrossRefGoogle Scholar
  17. Klemm D, Philipp B, Heinze U, Wagenknecht W (1998) Activated cellulose. In: Comprehensive cellulose chemistry, Vol I. Wiley, New York, pp 152–154Google Scholar
  18. Klenkova NI (1967) Reaction of cellulose with amines as a prospective means of activating cellulose and increasing its reactivity in the synthesis of various derivatives. Zh Prikl Khim 40:2191–2208Google Scholar
  19. Kono H, Erata T, Takai M (2003) Determination of the through-bond carbon–carbon and carbon-proton connectivities of the native celluloses in the solid state. Macromolecules 36:5131–5138CrossRefGoogle Scholar
  20. Kono H, Numata Y, Erata T, Takai M (2004) 13C and 1H resonance assignment of mercerized cellulose II by two-dimensional MAS NMR spectroscopies. Macromolecules 37:5310–5316CrossRefGoogle Scholar
  21. Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946CrossRefGoogle Scholar
  22. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRefGoogle Scholar
  23. Lee DM, Burnfield KE, Blackwell J (1984) Structure of a cellulose I ethylenediamine complex. Biopolymers 23:111–126CrossRefGoogle Scholar
  24. Lewin M, Rau RO, Sello SB (1974) Role of liquid ammonia in functional textile finishes. Text Res J 44:680–686CrossRefGoogle Scholar
  25. Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671CrossRefGoogle Scholar
  26. Nishiyama Y, Kuga S, Wada M, Okano T (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30:6395–6397CrossRefGoogle Scholar
  27. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure ad hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  28. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefGoogle Scholar
  29. Numata Y, Kono H, Kawano S, Erata T, Takai MJ (2003) Cross-polarization/magic-angle spinning 13C nuclear magnetic resonance study of cellulose I-ethylenediamine complex. Biosci Bioeng 96:461–466CrossRefGoogle Scholar
  30. Pandey SN, Nair P (1975) Study of the effect of anhydrous liquid ammonia treatment on cellulose. Text Res J 45:648–653CrossRefGoogle Scholar
  31. Peralta-Inga Z, Johnson GP, Dowd MK, Randleman JA, Stevens ED, French AD (2002) The crystal structure of the alpha-cellobiose.NaI.H2O complex in the context of related structures and conformational analysis. Carbohydr Res 337:851–861CrossRefGoogle Scholar
  32. Porro F, Bedue O, Chanzy H, Heux L (2007) Solid-state C-13 NMR study of Na-cellulose complexes. Biomacromolecules 8:2586–2593CrossRefGoogle Scholar
  33. Sheldrick GM (1997) SHELX-97, a program for the refinement of single-crystal diffraction data. University of Gottingen, GottingenGoogle Scholar
  34. Sugiyama J, Okano T, Yamamoto H, Horii FJ (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198CrossRefGoogle Scholar
  35. Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466CrossRefGoogle Scholar
  36. Sugiyama J, Vuong R, Chanzy H (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  37. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Biosour Technol 96:2014CrossRefGoogle Scholar
  38. Umikalsom MS, Ariff AB, Zulkifli HS, Tong CC, Hassan MA, Karim MIA (1997) The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by Chaetomium globosum Kunze. Bioresour Technol 62:1–9CrossRefGoogle Scholar
  39. Wada M (2001) In situ observation of the crystalline transformation from cellulose IIII to Iβ. Macromolecules 34:3271–3275CrossRefGoogle Scholar
  40. Wada M, Heux L, Isogai A, Nishiyama Y, Chanzy H, Sugiyama J (2001) Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34:1237–1243CrossRefGoogle Scholar
  41. Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 23:8548–8555CrossRefGoogle Scholar
  42. Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose IIII. Macromolecules 39:2947–2952CrossRefGoogle Scholar
  43. Wada M, Kwon GJ, Nishiyama Y (2008) Structure and thermal behavior of a cellulose I-ethylenediamine complex. Biomacromolecules 9:2898–2904CrossRefGoogle Scholar
  44. Xiao M, Frey MW (2007) The role of salt on cellulose dissolution in ethylene diamine/salt solvent systems. Cellulose 14:225–234CrossRefGoogle Scholar
  45. Yamamoto H, Horii F (1993) CP/MAS 13C NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26:1313–1317CrossRefGoogle Scholar
  46. Yamamoto H, Horii F, Odani H (1989) Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures. Macromolecules 22:4130–4132CrossRefGoogle Scholar
  47. Yanai Y, Shimizu Y (2006) The liquid ammonia treatment of cotton fibers—comparison and combination with mercerization using a practical unit. Sen’i Gakkaishi 62:100–105CrossRefGoogle Scholar
  48. Zargarian K, Aravamuthan R, April GC (1988) Organosolve delignification of southern pine—an alternative pulping process. Chem Eng Technol 11:195–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Masahisa Wada
    • 1
  • Laurent Heux
    • 2
  • Yoshiharu Nishiyama
    • 2
  • Paul Langan
    • 3
    Email author
  1. 1.Department of Biomaterials Science, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  2. 2.Centre de Recherches sur les Macromolécules Végétales – CNRSAffiliated with the Joseph Fourier University of GrenobleGrenoble Cedex 9France
  3. 3.Bioscience DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations