Advertisement

Linking low- to high-energy dynamics of invariant manifolds, transit orbits, and singular collision orbits in the planar circular restricted three-body problem

  • Kenta OshimaEmail author
Original Article
  • 121 Downloads

Abstract

The first part of the present paper reveals interplays among invariant manifolds emanating from planar Lyapunov orbits around the three collinear Lagrange points \(L_1, L_2\), and \(L_3\) for high energies. Once the energetically forbidden region vanishes, the invariant manifolds together form closed separatrices bounding transit orbits in the phase space, deviating from the low-energy picture of invariant manifold tubes. Though the qualitatively different behavior of invariant manifolds emerges for high energies, associated transit orbits possess a common feature generalized from that of low-energy transit orbits. The second part extends our previous proposal of using singular collision orbits associated with the secondary to find trajectories reaching the vicinity of the secondary to low energies. Statistical analyses indicate that singular collision orbits are useful to find such transfer trajectories except for the very low-energy regime. These results are numerically obtained in the Earth–Moon and Sun–Jupiter planar circular restricted three-body problems.

Keywords

Invariant manifolds Collinear Lagrange points Transit orbits Singular collision orbits Poincaré section Planar circular restricted three-body problem 

Notes

Acknowledgements

This study has been partially supported by Grant-in-Aid for JSPS Fellows No. 18J00678.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflicts of interest.

References

  1. Carletta, S., Pontani, M., Teofilatto, P.: Long-term capture orbits for low-energy space missions. Celest. Mech. Dyn. Astron. 130, 46 (2018).  https://doi.org/10.1007/s10569-018-9843-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. Conley, C.C.: Low energy transit orbits in the restricted three-body problems. SIAM J. Appl. Math. 16, 732–746 (1968).  https://doi.org/10.1137/0116060 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Cox, A.D., Howell, K.C., Folta, D.C.: Dynamical structures in a low-thrust, multi-body model with applications to trajectory design. Celest. Mech. Dyn. Astron. 131, 12 (2019).  https://doi.org/10.1007/s10569-019-9891-7 ADSMathSciNetCrossRefGoogle Scholar
  4. Giancotti, M., Pontani, M., Teofilatto, P.: Lunar capture trajectories and homoclinic connections through isomorphic mapping. Celest. Mech. Dyn. Astron. 114, 55–76 (2012).  https://doi.org/10.1007/s10569-012-9435-x ADSMathSciNetCrossRefGoogle Scholar
  5. Giancotti, M., Pontani, M., Teofilatto, P.: Cylindrical isomorphic mapping applied to invariant manifold dynamics for Earth–Moon missions. Celest. Mech. Dyn. Astron. 120, 249–268 (2014).  https://doi.org/10.1007/s10569-014-9563-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. Hénon, M.: Numerical exploration of the restricted problem. V. Hill’s case: periodic orbits and their stability. A&A 1, 223–238 (1969)ADSzbMATHGoogle Scholar
  7. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000).  https://doi.org/10.1063/1.166509 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astron. 81, 63–73 (2001).  https://doi.org/10.1023/A:1013359120468 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books, Wellington (2011)zbMATHGoogle Scholar
  10. Lega, E., Guzzo, M., Froeschlé, C.: Detection of close encounters and resonances in three-body problems through Levi-Civita regularization. MNRAS 418, 107–113 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19467.x ADSCrossRefGoogle Scholar
  11. Levi-Civita, T.: Sur la résolution qualitative du probleme restrient des trios corps. Acta Math. 30, 305–327 (1906).  https://doi.org/10.1007/BF02418577 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Moser, J.: On the generalization of a theorem of A. Liapounoff. Commun. Pure Appl. Math. 11, 257–271 (1958).  https://doi.org/10.1002/cpa.3160110208 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, New York (1999)zbMATHGoogle Scholar
  14. Oshima, K.: The role of vertical instability of Jupiter’s quasi-satellite orbits: making hazardous asteroids less detectable? MNRAS 482, 5441–5447 (2019a).  https://doi.org/10.1093/mnras/sty3125 ADSCrossRefGoogle Scholar
  15. Oshima, K.: The use of vertical instability of \(L_1\) and \(L_2\) planar Lyapunov orbits for transfers from near rectilinear halo orbits to planar distant retrograde orbits in the Earth–Moon system. Celest. Mech. Dyn. Astron. 131, 14 (2019b).  https://doi.org/10.1007/s10569-019-9892-6 ADSCrossRefGoogle Scholar
  16. Oshima, K., Yanao, T.: Jumping mechanisms of Trojan asteroids in the restricted three- and four-body problems. Celest. Mech. Dyn. Astron. 122, 53–74 (2015).  https://doi.org/10.1007/s10569-015-9609-4 ADSMathSciNetCrossRefGoogle Scholar
  17. Oshima, K., Topputo, F., Campagnola, S., Yanao, T.: Analysis of medium-energy transfers to the Moon. Celest. Mech. Dyn. Astron. 127, 285–300 (2017).  https://doi.org/10.1007/s10569-016-9727-7 ADSMathSciNetCrossRefGoogle Scholar
  18. Pontani, M., Teofilatto, P.: Low-energy Earth–Moon transfers involving manifolds through isomorphic mapping. Acta Astronaut. 91, 96–106 (2013).  https://doi.org/10.1016/j.actaastro.2013.05.009 ADSCrossRefGoogle Scholar
  19. Pontani, M., Giancotti, M., Teofilatto, P.: Manifold dynamics in the Earth–Moon system via isomorphic mapping with application to spacecraft end-of-life strategies. Acta Astronaut. 105, 218–229 (2014).  https://doi.org/10.1016/j.actaastro.2014.08.029 ADSCrossRefzbMATHGoogle Scholar
  20. Ross, S.D., Scheeres, D.J.: Multiple gravity assists, capture, and escape in the restricted three-body problem. SIAM J. Appl. Dyn. Syst. 6, 576–596 (2007).  https://doi.org/10.1137/060663374 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. Swenson, T., Lo, M., Anderson, B., Gorordo, T.: The topology of transport through planar Lyapunov orbits. Space Flight Mechanics Meeting, AIAA 2018-1692, Kissimmee, USA, 8–12 January (2018).  https://doi.org/10.2514/6.2018-1692
  22. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)zbMATHGoogle Scholar
  23. Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Low energy interplanetary transfers exploiting invariant manifolds of the restricted three-body problem. J. Astronaut. Sci. 53, 353–372 (2005)MathSciNetGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Astronomical Observatory of JapanTokyoJapan

Personalised recommendations