The Kepler problem: the energy point, the Levi-Civita, the Burdet and the KS regularizations via the primigenial sphere

  • Maria Dina VivarelliEmail author
Original Article


In our unitary description (Vivarelli in Meccanica 50:915–925, 2015) of the Kepler problem (obtained via the introduction of a simple structure, the primigenial sphere \(S_{p^{-1}}\)), we have shown that this sphere encompasses, in a sort of inbred order of its elements, several fundamental elements of the Kepler problem. In this paper, we show that also the mechanical energy of an elliptic Kepler orbit is an element embedded in the sphere through a peculiar point, the energy point \(P^*\). We show that this point in its circular motion on the sphere has a velocity which is strictly linked to so-called Sundman–Levi-Civita regularizing time transformation (Levi-Civita in Opere matematiche, 1973). Moreover in this spherical scenario, we reconsider both the two regularizations of the Kepler problem, namely the Bohlin–Burdet (Burdet in Z Angew Math Phys 18:434–438, 1967) and the Kustaanheimo and Stiefel (KS) regularizations (J Reine Angew Math 218:204–219, 1965): we present a geometrical interpretation of the first one, and we show an explicit link between their regularizing fundamental equations.


Kepler problem Primigenial sphere Regularization Mechanical energy General mechanics 


Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict of interest.


  1. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972a)ADSMathSciNetCrossRefGoogle Scholar
  2. Baumgarte, J.: Numerical stabilization of the differential equations of Keplerian motion. Celest. Mech. 5, 490–501 (1972b)ADSMathSciNetCrossRefGoogle Scholar
  3. Boccaletti, D., Pucacco, G.: Theory of Orbits. Springer, Berlin (1996)CrossRefGoogle Scholar
  4. Bohlin, K.: Note sur le problème des deux corps et sur une intégration nouvelle dans le problème des trois corps. Bull. Astron. 28, 113–119 (1911)zbMATHGoogle Scholar
  5. Breiter, S., Langner, K.: Kustaanheimo–Stiefel transformation with an arbitrary defining vector. Celest. Mech. Dyn. Astr. 128, 323–342 (2017)ADSMathSciNetCrossRefGoogle Scholar
  6. Burdet, C.A.: Regularization of the two-body problem. Z. Angew. Math. Phys. 18, 434–438 (1967)CrossRefGoogle Scholar
  7. Celletti, A.: The Levi-Civita, KS and radial-inversion regularizing transformation. In: Benest, D., Froeshle’, C. (eds.) Singularities in Gravitational Systems. Lecture Notes in Physics, pp. 25–48. Springer, Berlin (2002)CrossRefGoogle Scholar
  8. Deprit, A., Elipe, A., Ferrer, S.: Linearization: Laplace vs. Stiefel. Celest. Mech. Dyn. Astr. 58, 151–201 (1994)ADSMathSciNetCrossRefGoogle Scholar
  9. Ferrer, S., Crespo, S.: Alternative angle-based approach to the KS-map. An interpretation through symmetry and reduction (2017). arXiv:1711.08530v1 [math-ph]
  10. Kustaanheimo, P., Stiefel, E.: Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 218, 204–219 (1965)MathSciNetzbMATHGoogle Scholar
  11. Levi-Civita, T.: Opere Matematiche, vol. 6, pp. 111–133. Zanichelli, Bologna (1973)Google Scholar
  12. Stiefel, E.L., Scheifele, G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971)CrossRefGoogle Scholar
  13. Vivarelli, M.D.: The KS-transformation in hypercomplex form. Celest. Mech. Dyn. Astr. 29, 45–50 (1983)ADSMathSciNetCrossRefGoogle Scholar
  14. Vivarelli, M.D.: The Kepler problem: a unifying view. Celest. Mech. Dyn. Astr. 60, 291–305 (1994a)ADSMathSciNetCrossRefGoogle Scholar
  15. Vivarelli, M.D.: The KS-transformation revised. Meccanica 29, 15–26 (1994b)CrossRefGoogle Scholar
  16. Vivarelli, M.D.: The Amazing \({\mathbf{S}}\)-Code of the Conic Sections and the Kepler Problem. Polipress, Milano (2005)Google Scholar
  17. Vivarelli, M.D.: The Kepler problem primigenial sphere. Meccanica 50, 915–925 (2015)MathSciNetCrossRefGoogle Scholar
  18. Waldvogel, J.: Quaternions and the perturbed Kepler problem. Celest. Mech. Dyn. Astr. 95, 201–212 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica F. BrioschiPolitecnico di MilanoMilanItaly

Personalised recommendations