Satellite with periodical mass redistribution: relative equilibria and their stability

  • Alexander Burov
  • Anna Guerman
  • Ivan KosenkoEmail author
Original Article
Part of the following topical collections:
  1. Innovative methods for space threats: from their dynamics to interplanetary missions


The dynamics of a spacecraft with variable mass distribution is considered, assuming a central Newtonian gravitational field. The equations of spatial attitude motion are derived within the framework of the so-called satellite approximation and examined via a Hamiltonian approach. The centre of mass of the satellite multibody system moves along an elliptic orbit of arbitrary eccentricity. For a prescribed attitude motion, control via the mass redistribution is determined. Various classes of relative equilibria are detected, and the respective control is obtained. The stability of the spacecraft spatial attitude motions is examined in detail.


Spacecraft attitude control Attitude dynamics in elliptic orbit Variable mass distribution Spacecraft oscillations Conditions of stability 



The paper has been prepared with help from project EMaDeS (Centro-01-0145-FEDER-000017), the Portuguese Foundation for Science and Technology via the Centre for Mechanical and Aerospace Science and Technologies, C-MAST (POCI-01-0145-FEDER-007718) for the second author, RFBR Project No. 16-01-00625a for the first author, and RSF Project No. 14-21-00068 for the third author at MAI.

Compliance with ethical standards

Conflict of interest

The authors certify that they have no conflict of interest to declare.


  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate texts in mathematics, vol. 60, p. 519. Springer, Berlin (1989)Google Scholar
  2. Atchonouglo, E., Vallée, C., Monnet, T., Fortuné, D.: Identification of the ten inertia parameters of a rigid body. JAMM 72, 22–25 (2008)MathSciNetzbMATHGoogle Scholar
  3. Beletskii, V.V.: Motion of an Artificial Satellite About its Center of Mass, p. 261. Israel Program for Scientific Translation, Jerusalem (1966)Google Scholar
  4. Beletsky, V.V.: Essays on the Motion of Celestial Bodies, p. 392. Birkhaüser, Basel (2001)CrossRefGoogle Scholar
  5. Burov, A., Kosenko, I.: On plane oscillations of a body with a variable mass distribution in an elliptic orbit. In: Proceedings of the ENOC 2011, 24–29 July 2011, Rome, Italy (2011)Google Scholar
  6. Burov, A.A.: Poisson variations in the problem of the stability of equilibria in rigid body mechanics. J. Appl. Math. Mech. 74(1), 68–75 (2010)MathSciNetCrossRefGoogle Scholar
  7. Burov, A.A.: Oscillations of a vibrating dumbbell on an elliptic orbit. Dokl. Phys. 56, 182–185 (2011)ADSCrossRefGoogle Scholar
  8. Burov, A.A., Chevallier, D.P.: Dynamics of affinely deformable bodies from the standpoint of theoretical mechanics and differential geometry. Rep. Math. Phys. 62, 283–321 (2008)ADSMathSciNetCrossRefGoogle Scholar
  9. Burov, A.A., Kosenko, I.I.: Planar vibrations of a solid with variable mass distribution in an elliptic orbit. Dokl. Phys. 56, 548–552 (2011)ADSCrossRefGoogle Scholar
  10. Burov, A., Kosenko, I.: On planar oscillations of a body with a variable mass distribution in an elliptic orbit. J. Mech. Eng. Sci. 225, 2288–2295 (2011)CrossRefGoogle Scholar
  11. Chetaev, N.G.: Theoretical Mechanics, p. 407. Mir, Moscow (2001)zbMATHGoogle Scholar
  12. Chicone, C.: Ordinary Differential Equations with Applications. Springer, New York (2006)zbMATHGoogle Scholar
  13. De Bra, D.B., Delp, R.H.: Satellite stability and natural frequencies in a circular orbit. J. Astron. Sci. 8(1), 14–17 (1961)Google Scholar
  14. Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion, p. 499. Springer, New York (1983)CrossRefGoogle Scholar
  15. Magnus, K.: Die Stabilitat partikularer Drehbewegungen von Satelliten beliebiger Form auf einer Kreisbahn. Ing.-Arch. 34, S.129 (1965)CrossRefGoogle Scholar
  16. Markeev, A.P.: Linear Hamiltonian Systems and Some Problems of Stability of Motion of a Satellite with Respect to a Center of Mass. Regular and Chaotic Dynamics, p. 396, Izhevsk (2009). (In Russian)Google Scholar
  17. Markeev, A.P., Sokolskii, A.G.: On the problem of stability of relative equilibrium of a satellite in a circular orbit. Cosm. Res. 13(2), 119–125 (1975)ADSGoogle Scholar
  18. Moser, J.K.: Lectures on Hamiltonian systems. Memoirs of the American Mathematical Society, Courant Institute of Mathematical Science, New York, 81, 1–60 (1968)Google Scholar
  19. Moser, J.: Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics (AM-77). Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton (1973)Google Scholar
  20. Pascal, M.: Sur le mouvement d’un triple bâtonnet dans un champ Newtonien. J. de Mécanique. 11, 147–160 (1972)ADSzbMATHGoogle Scholar
  21. Polyanskaya, I.P.: Oscillations of a satellite with compensating devices in an elliptical orbit. Cosm. Res. 20, 674–681 (1982)Google Scholar
  22. Rubanovsky, V.N., Samsonov, V.A.: Stability of Stationary Motions in Examples and Problems. Nauka, Moscow (1988). (In Russian)Google Scholar
  23. Schiehlen, W.: Über den Drallsatz für Satelliten mit im Innern bewegten Massen, Z. angew. Math. Mech., Bd.46, Sonderheft, S. T132–T134 (1966)Google Scholar
  24. Schiehlen, W.: Über die Lagestabilisirung künstlicher Satelliten auf elliptischen Bahnen. Diss. Dokt.-Ing., 148 S. technische Hochschule Stuttgart, Stuttgart (1966)Google Scholar
  25. Schiehlen, W., Kolbe, O.: Gravitationsstabilisierung von Satelliten auf elliptischen Bahnen. Arch. Appl. Mech. (Ing.-Arch.) 38, 389–399 (1969)zbMATHGoogle Scholar
  26. Seiliger, D.N.: Mechanics of similarly varying system. In: Schulze, A. (ed.) Typography, p. 23. Typography of A. Schulze, Odessa (1890-91). (In Russian)Google Scholar
  27. Sidorenko, V.V., Neustadt, A.I.: Investigation of the stability of long-periodic planar motion of a satellite in a circular orbit. Cosm. Res. 38, 307–321 (2000)Google Scholar
  28. Sławianowski, J.J.: The mechanics of the homogeneously-deformable body. Dynamical models with high symmetries. Z. Angew. Math. Mech. 62, 229–240 (1982)CrossRefGoogle Scholar
  29. Stoker, J.J.: Nonlinear Vibrations in Mechanical and Electrical Systems, p. 294. Wiley, New York (1950)zbMATHGoogle Scholar
  30. Yakubovich, V.A., Starzhinskii, V.M.: Linear Differential Equations with Periodic Coefficients, vol. 1, p. 386. Israel Program for Scientific translations. Jerusalem, London (1975)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Dorodnicyn Computing Centre of RASMoscowRussia
  2. 2.National Research University High School of EconomyMoscowRussia
  3. 3.University of Beira InteriorCovilhãPortugal
  4. 4.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations