Creation of a synthetic population of space debris to reduce discrepancies between simulation and observations

  • Alexis PetitEmail author
  • Daniel Casanova
  • Morgane Dumont
  • Anne Lemaître
Original Article


The number of space debris has increased in the orbital environment, and consequently, the risk of collision between satellites and space debris or space debris and space debris has become a hot topic in Celestial Mechanics. Unfortunately, just a small fraction of the biggest and brightest objects are visible by means of radar and optical telescopes. In the last years, many efforts have been made to simulate the creation of space debris populations through different models, which use different sources and diverse orbital propagators, to study how they evolve in the near future. Modeling a fragmentation event is rather complex; furthermore, large uncertainties appear in the number of created fragments, the ejection directions and velocities. In this paper, we propose an innovative way to create a synthetic population of space debris from simulated data, which are constrained by observational data, plus an iterative proportional fitting method to adjust the simulated population by statistical means. The final purpose consists in improving a synthetic population of space debris created with a space debris model helped by an additional data set which allows to converge toward a new synthetic population whose global statistical properties are more satisfying.


Space debris Synthetic population GEO region Iterative proportional fitting method Microsimulation 



The work of A. Petit is supported by a F.R.I.A Ph.D grant. The work of D. Casanova was supported by the Spanish Ministry of Economy and Competitiveness, Project No. ESP2017–87113–R (AEI/FEDER, UE), and by the Aragon Government and European Social Fund (Group E24_17R). This research used resources of the “Plateforme Technologique de Calcul Intensif (PTCI)” ( located at the University of Namur, Belgium, which is supported by the F.R.S.-FNRS under the convention No. 2.4520.11. The PTCI is a member of the “Consortium des quipements de Calcul Intensif (CCI)” (


  1. Casanova, D., Tardioli, C., Lemaître, A.: Space debris collision avoidance using a three-filter sequence. Mon. Not. R. Astron. Soc. 442(4), 32353242 (2014)ADSCrossRefGoogle Scholar
  2. Casanova, D., Petit, A., Lemaître, A.: Long-term evolution of space debris under the J2 effect, the solar radiation pressure and the solar and lunar perturbations. Celest. Mech. Dyn. Astron. 123, 223–228 (2015)ADSCrossRefGoogle Scholar
  3. Celletti, A., Efthymiopoulos, C., Gachet, F., Gale, C., Pucacco, G.: Dynamical models and the onset of chaos in space debris. Int. J. Nonlinear Mech. 90, 147–163 (2017)ADSCrossRefGoogle Scholar
  4. Cowardin, H., Anz-Meador, P.D., Reyes, J.A.: Characterizing GEO Titan IIIC transtage fragmentations using ground-based and telescopic measurements. In: Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference, Vol. 36 (2017)Google Scholar
  5. Delsate, N., Compère, A.: NIMASTEP: a software to modelize, study, and analyze the dynamics of various small objects orbiting specific bodies. Astron. Astrophys. 540, (A120) (2012)ADSCrossRefGoogle Scholar
  6. Flegel, S., Gelhaus, J., Wiedemann, C., et al.: The MASTER-2009 space debris environment model. In: Proceedings of the Fifth European Conference on Space Debris, Vol. 672, p. 15 (2009)Google Scholar
  7. Horstmann, A., Stoll, E., Krag, H.: A validation method of ESA’s MASTER 1 cm population in low earth orbit. In: Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference, id. 87 (2017)Google Scholar
  8. Hubaux, C., Lemaître, A.: The impact of Earths shadow on the long-term evolution of space debris. Celest. Mech. Dyn. Astron. 116, 79–95 (2013)ADSMathSciNetCrossRefGoogle Scholar
  9. Hubaux, C., Lemaître, A., Delsate, N., Carletti, T.: Symplectic integration of space debris motion considering several Earths shadowing models. Adv. Space Res. 49(10), 1472–1486 (2012)ADSCrossRefGoogle Scholar
  10. Inter-Agency Space Debris Coordination Committee (IADC). IADC-02-01. Space Debris Mitigation Guidelines. Revision 1 (2007)Google Scholar
  11. Jehn, R., Ariafar, S., Schildknecht, T., Musci, R., Oswald, M.: Estimating the number of debris in the geostationary ring. Acta Astronaut. 59(15), 84–90 (2006)ADSCrossRefGoogle Scholar
  12. Johnson, N.L., Krisko, P.H., Liou, J.-C., Anz-Meador, P.D.: NASA’s new breakup model of evolve 4.0. Adv. Space Res. 28(9), 1377–1384 (2001)ADSCrossRefGoogle Scholar
  13. Johnson, N.L., Stansbery, E., Whitlock, D.O., Abercromby, K.J., Shoots, D.: History of On-Orbit Satellite Fragmentations, 14th edn. Orbital Debris Program Office, Houston (2008)Google Scholar
  14. Lewis, H.G., Swinerd, G., Williams, N., Gittins, G.: DAMAGE: a dedicated GEO debris model framework. Proc. Third Eur. Conf. Space Debris 1, 373–378 (2001)ADSGoogle Scholar
  15. Liou, J.-C., Hall, D.T., Krisko, P.H., Opiela, J.N.: LEGEND a three-dimensional LEO-to-GEO debris evolutionary model. Adv. Space Res. 34(5), 981–986 (2004)ADSCrossRefGoogle Scholar
  16. Lovelace, R., Ballas, D.: Truncate, replicate, sample: a method for creating integer weights for spatial microsimulation. Comput. Environ. Urban Syst. 41(1), 1–11 (2013)CrossRefGoogle Scholar
  17. Lovelace, R., Dumont, M.: Spatial microsimulation with R. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  18. Orbital Debris Program Office: Orbital Debris Quarterly News, Vol. 20, No. (1–2), pp. 3–4 (2016a)Google Scholar
  19. Orbital Debris Program Office: Orbital Debris Quarterly News, Vol. 20, No. 4, pp. 2–3 (2016b)Google Scholar
  20. Orbital Debris Program Office: Orbital Debris Quarterly News, Vol. 22, No. 2, p. 4 (2018)Google Scholar
  21. Petit, A., Lemaître, A.: The impact of the atmospheric model and of the space weather data on the dynamics of clouds of space debris. Adv. Space Res. 57(11), 2245–2258 (2016)ADSCrossRefGoogle Scholar
  22. Rossi, A., Valsecchi, G.B.: Collision risk against space debris in Earth orbits. Celest. Mech. Dyn. Astron. 95(14), 345356 (2006)MathSciNetzbMATHGoogle Scholar
  23. Rossi, A., Anselmo, L., Pardini, C., Jehn, R., Valsecchi, G.B.: The new space debris mitigation (SDM 4.0) long term evolution code. In: Proceedings of the Fifth European Conference on Space Debris, Vol. 672, No. 90 (2009)Google Scholar
  24. Rossi, A., Lewis, H., White, A., Anselmo, L., Pardini, C., Krag, H., Bastida, V.B.: Analysis of the consequences of fragmentations in low and geostationary orbit. Adv. Space Res. 57(8), 1652–1663 (2016)ADSCrossRefGoogle Scholar
  25. Schildknecht, T., Musci, R., Ploner, M., Beutler, G., Flury, W., Kuusela, J., De Leon Cruz, J.: De Fatima Dominguez Palmero. L. Adv. Space Res. 34(5), 901–911 (2004)ADSCrossRefGoogle Scholar
  26. Suesse, T., Namazi-Rad, M., Mokhtarian, P., Barthélemy, J.: Estimating cross-classified population counts of multidimensional tables: an application to regional Australia to obtain pseudo-census counts. J. Off. Stat. 33(4), 1021–1050 (2017)CrossRefGoogle Scholar
  27. Valk, S., Delsate, N., Lemaître, A., Carletti, T.: Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator. Adv. Space Res. 43(10), 1509–1526 (2009)ADSCrossRefGoogle Scholar
  28. Valsecchi, G.B., Rossi, A.: Analysis of the space debris impacts risk on the international space station. In: Celletti, A., Ferraz-Mello, S., Henrard, J. (eds.) Modern Celestial Mechanics: From Theory to Applications. Springer, Dordrecht (2002)Google Scholar
  29. Wnuk, E.: Space debris—the short term orbital evolution in the earth gravity field. Celest. Mech. Dyn. Astron. 66, 71–78 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.University of NamurNamurBelgium
  2. 2.Centro Universitario de la DefensaSaragossaSpain

Personalised recommendations