Advertisement

The mechanistic role of oxidative stress in cigarette smoke-induced cardiac stem cell dysfunction and prevention by ascorbic acid

  • Wasana K. Sumanasekera
  • Halle Thy Dao
  • Viktoria Shekhovtsova
  • Kadi Schultz
  • Mehul Jani
  • Felix Gyamfi
  • David M. Tran
  • Nolan Le
Original Article
  • 2 Downloads

Abstract

Cigarette smoking causes a vast array of diseases including cardiovascular diseases. Our laboratory focuses on investigating cigarette smoke (CS)-induced cardiovascular malfunction and the responsible mechanisms utilizing the model, c-kit-positive cardiac stem cells (CSCs). The main objective of our study is to investigate whether CS extracts (CSEs) cause impairment of CSC functions via oxidative damage. We hypothesized that CSE, via oxidative modifications of CSC proteins and antioxidant enzymes, can modulate CSC functions and these modifications can be attenuated by ascorbate treatment. Our specific aims are (1) to investigate CSE-induced oxidative modification of CSC proteins via carbonylation, and prevention by ascorbic acid; (2) to investigate CSE-induced oxidative modification of antioxidant enzymes and ascorbic acid-mediated modulations; and (3) to investigate CSE-induced changes in CSC functions and protection by ascorbic acid. CSCs were cultured, and the aqueous extracts of CSE were prepared. CSE-induced modulations of CSC viability, oxidative modification of proteins, and antioxidant enzyme activities were detected using standard assays including Apostain, bromodeoxyuridine, and Oxiblot. CSE caused oxidative modification of CSC proteins, changed antioxidant enzyme levels, attenuated CSC proliferation, and accelerated CSC apoptosis. Ascorbic acid prevented CSE-induced CSC malfunctions, and ascorbic acid therapy might be useful in smoker CSC recipients and to condition CSCs prior to the transplant in the future. Cardiac stem cell therapy is currently undergoing in clinical trials.

Keywords

Oxidative stress Ascorbic acid Cardiac stem cell Cigarette smoke Oxiblot Stem cell therapy 

Abbreviations

CS

Cigarette smoke

CSC

Cardiac stem cell

CSCT

Cardiac stem cell therapy

CSE

Cigarette smoke extract

DNPH

Dinitrophenylhydrazine

Notes

Acknowledgements

We would like to thank Dr. Rokosh, Dr. Bolli, and Dr. Anversa for providing the c-kit+ cardiac stem cells.

Funding information

We would like to acknowledge the Sullivan University System for providing the funding to Dr. Sumanasekera via faculty development grants RG_1_PS_2009 and RG_1_PS_2012-01.

References

  1. Al-Shmgani HS, Moate RM, Sneyd JR, Macnaughton PD, Moody AJ. Hyperoxia-induced ciliary loss and oxidative damage in an in vitro bovine model: the protective role of antioxidant vitamins E and C. Biochem Biophys Res Commun. 2012;429(3–4):191–6.CrossRefPubMedGoogle Scholar
  2. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43(10):1731–7.CrossRefPubMedGoogle Scholar
  3. Barile L, Chimenti I, Gaetani R, Forte E, Miraldi F, Frati G, et al. Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat Clin Pract Cardiovasc Med. 2007;4(Suppl 1):S9–S14.CrossRefPubMedGoogle Scholar
  4. Bartalis J, Chan WG, Wooten JB. A new look at radicals in cigarette smoke. Anal Chem. 2007;79(13):5103–6.CrossRefPubMedGoogle Scholar
  5. Baskaran S, Lakshmi S, Prasad PR. Effect of cigarette smoke on lipid peroxidation and antioxidant enzymes in albino rat. Indian J Exp Biol. 1999;37(12):1196–200.PubMedGoogle Scholar
  6. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87(4):1620–4.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–76.CrossRefPubMedGoogle Scholar
  8. Bernhard D, Csordas A, Henderson B, Rossmann A, Kind M, Wick G. Cigarette smoke metal-catalyzed protein oxidation leads to vascular endothelial cell contraction by depolymerization of microtubules. FASEB J. 2005;19(9):1096–107.CrossRefPubMedGoogle Scholar
  9. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847–57.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cadenas S, Rojas C, Perez-Campo R, Lopez-Torres M, Barja G. Effect of dietary vitamin C and catalase inhibition of antioxidants and molecular markers of oxidative damage in guinea pigs. Free Radic Res. 1994;21(2):109–18.CrossRefPubMedGoogle Scholar
  11. Carp H, Janoff A. Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am Rev Respir Dis. 1978;118(3):617–21.PubMedGoogle Scholar
  12. Centers for Disease Control and Prevention (US); National Center for Chronic Disease Prevention and Health Promotion (US); Office on Smoking and Health (US). How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the surgeon general. Atlanta (GA); (2010).Google Scholar
  13. Cross CE, Traber M, Eiserich J, van der Vliet A. Micronutrient antioxidants and smoking. Br Med Bull. 1999;55(3):691–704.CrossRefPubMedGoogle Scholar
  14. Das B, Maity PC, Sil AK. Vitamin C forestalls cigarette smoke induced NF-kappaB activation in alveolar epithelial cells. Toxicol Lett. 2013;220(1):76–81.CrossRefPubMedGoogle Scholar
  15. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A. 2005a;102(10):3766–71.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dawn B, Zuba-Surma EK, Abdel-Latif A, Tiwari S, Bolli R. Cardiac stem cell therapy for myocardial regeneration. A clinical perspective. Minerva Cardioangiol. 2005b;53(6):549–64.PubMedGoogle Scholar
  17. Edirisinghe I, Arunachalam G, Wong C, Yao H, Rahman A, Phipps RP, et al. Cigarette-smoke-induced oxidative/nitrosative stress impairs VEGF- and fluid-shear-stress-mediated signaling in endothelial cells. Antioxid Redox Signal. 2010;12(12):1355–69.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ezzati M, Henley SJ, Thun MJ, Lopez AD. Role of smoking in global and regional cardiovascular mortality. Circulation. 2005;112(4):489–97.CrossRefPubMedGoogle Scholar
  19. Fagerstrom K. The epidemiology of smoking: health consequences and benefits of cessation. Drugs. 2002;62(Suppl 2):1–9.CrossRefPubMedGoogle Scholar
  20. Faraci FM, Didion SP. Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol. 2004;24(8):1367–73.CrossRefPubMedGoogle Scholar
  21. Gomes P, Simao S, Lemos V, Amaral JS, Soares-da-Silva P. Loss of oxidative stress tolerance in hypertension is linked to reduced catalase activity and increased c-Jun NH2-terminal kinase activation. Free Radic Biol Med. 2013;56:112–22.CrossRefPubMedGoogle Scholar
  22. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91(14):1194–210Google Scholar
  23. Heitzer T, Just H, Munzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation. 1996;94(1):6–9.CrossRefPubMedGoogle Scholar
  24. Hoyert DL, Heron M, Murphy SL, Kung HC. Deaths: Final data for 2003. In: The health consequences of Involuntary exposure to tobacco smoke. A report of the surgeon General. Office on smoking and health (US) Atlanta (GA). Centers for Disease Conrol and Prevention (US). 2006. http://www.cdc.gov/nchs/products/pubs/pubd/hestats/finaldeaths03.htm. Accessed 19 Jan 2006.
  25. Jaimes EA, DeMaster EG, Tian RX, Raij L. Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arterioscler Thromb Vasc Biol. 2004;24(6):1031–6.CrossRefPubMedGoogle Scholar
  26. Kawaguchi N, Smith AJ, Waring CD, Hasan MK, Miyamoto S, Matsuoka R, et al. c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling. PLoS One. 2010;5(12):e14297.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Knight-Lozano CA, Young CG, Burow DL, Hu ZY, Uyeminami D, Pinkerton KE, et al. Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation. 2002;105(7):849–54.CrossRefPubMedGoogle Scholar
  28. Kubo S, Kobayashi M, Masunaga Y, Ishii H, Hirano Y, Takahashi K, et al. Cytokine and chemokine expression in cigarette smoke-induced lung injury in guinea pigs. Eur Respir J. 2005;26(6):993–1001.CrossRefPubMedGoogle Scholar
  29. Landini L, Leone A. Smoking and hypertension: effects on clinical, biochemical and pathological variables due to isolated or combined action on cardiovascular system. Curr Pharm Des. 2011;17(28):2987–3001.CrossRefPubMedGoogle Scholar
  30. Liu X, Conner H, Kobayashi T, Kim H, Wen F, Abe S, et al. Cigarette smoke extract induces DNA damage but not apoptosis in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2005;33(2):121–9.CrossRefPubMedGoogle Scholar
  31. Liu X, Togo S, Al-Mugotir M, Kim H, Fang Q, Kobayashi T, et al. NF-kappaB mediates the survival of human bronchial epithelial cells exposed to cigarette smoke extract. Respir Res. 2008;9:66.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mendez-Alvarez E, Soto-Otero R, Sanchez-Sellero I, Lopez-Rivadulla Lamas M. In vitro inhibition of catalase activity by cigarette smoke: relevance for oxidative stress. J Appl Toxicol. 1998;18(6):443–8.CrossRefPubMedGoogle Scholar
  33. Michaud SE, Dussault S, Groleau J, Haddad P, Rivard A. Cigarette smoke exposure impairs VEGF-induced endothelial cell migration: role of NO and reactive oxygen species. J Mol Cell Cardiol. 2006;41(2):275–84.CrossRefPubMedGoogle Scholar
  34. Mio T, Romberger DJ, Thompson AB, Robbins RA, Heires A, Rennard SI. Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am J Respir Crit Care Med. 1997;155(5):1770–6.CrossRefPubMedGoogle Scholar
  35. Moritsugu KP. The 2006 report of the surgeon general: the health consequences of involuntary exposure to tobacco smoke. Am J Prev Med. 2007;32(6):542–3.CrossRefPubMedGoogle Scholar
  36. Numanami H, Koyama S, Nelson DK, Hoyt JC, Freels JL, Habib MP, et al. Serine protease inhibitors modulate smoke-induced chemokine release from human lung fibroblasts. Am J Respir Cell Mol Biol. 2003;29(5):613–9.CrossRefPubMedGoogle Scholar
  37. Oltmanns U, Chung KF, Walters M, John M, Mitchell JA. Cigarette smoke induces IL-8, but inhibits eotaxin and RANTES release from airway smooth muscle. Respir Res. 2005;6:74.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Panda K, Chattopadhyay R, Chattopadhyay DJ, Chatterjee IB. Vitamin C prevents cigarette smoke-induced oxidative damage in vivo. Free Radic Biol Med. 2000;29(2):115–24.CrossRefPubMedGoogle Scholar
  39. Panda K, Chattopadhyay R, Ghosh MK, Chattopadhyay DJ, Chatterjee IB. Vitamin C prevents cigarette smoke induced oxidative damage of proteins and increased proteolysis. Free Radic Biol Med. 1999;27(9–10):1064–79.CrossRefPubMedGoogle Scholar
  40. Pope CA 3rd, Burnett RT, Turner MC, Cohen A, Krewski D, Jerrett M, et al. Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships. Environ Health Perspect. 2011;119(11):1616–21.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pryor WA. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ Health Perspect. 1997;105(Suppl 4):875–82.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rafacho BP, Azevedo PS, Polegato BF, Fernandes AA, Bertoline MA, Fernandes DC, et al. Tobacco smoke induces ventricular remodeling associated with an increase in NADPH oxidase activity. Cell Physiol Biochem. 2011;27(3–4):305–12.CrossRefPubMedGoogle Scholar
  43. Rosen MR, Myerburg RJ, Francis DP, Cole GD, Marban E. Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. J Am Coll Cardiol. 2014;64(9):922–37.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Singh A, Rangasamy T, Thimmulappa RK, Lee H, Osburn WO, Brigelius-Flohe R, et al. Glutathione peroxidase 2, the major cigarette smoke-inducible isoform of GPX in lungs, is regulated by Nrf2. Am J Respir Cell Mol Biol. 2006;35(6):639–50.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Spitz DR, Phillips JW, Adams DT, Sherman CM, Deen DF, Li GC. Cellular resistance to oxidative stress is accompanied by resistance to cisplatin: the significance of increased catalase activity and total glutathione in hydrogen peroxide-resistant fibroblasts. J Cell Physiol. 1993;156(1):72–9.CrossRefPubMedGoogle Scholar
  46. Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, et al. Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun. 2015;6:8701.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sumanasekera WK, Tran DM, Sumanasekera TU, Le N, Dao HT, Rokosh GD. Cigarette smoke adversely affects functions and cell membrane integrity in c-kit+ cardiac stem cells. Cell Biol Toxicol. 2014;30(2):113–25.CrossRefPubMedGoogle Scholar
  48. Sumanasekera W, Waingeh B. Does Cigarette Smoke Cause Interleukin 1 - Beta (IL-1ß) Production in Cardiac Stem Cells? J Cell Biol Cell Metab. 2016;3:012.Google Scholar
  49. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 2010;121(2):293–305.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C, Nadal-Ginard B, et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci U S A. 2003;100(18):10440–5.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health. 2009;6(2):445–62.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Varela-Carver A, Parker H, Kleinert C, Rimoldi O. Adverse effects of cigarette smoke and induction of oxidative stress in cardiomyocytes and vascular endothelium. Curr Pharm Des. 2010;16(23):2551–8.CrossRefPubMedGoogle Scholar
  53. WHO. WHO urges more countries to require large, graphic health warnings on tobacco packaging: the WHO report on the global tobacco epidemic, 2011 examines anti-tobacco mass-media campaigns. Cent Eur J Public Health. 2011;19(3):133–151.Google Scholar
  54. Yamada S, Zhang XQ, Kadono T, Matsuoka N, Rollins D, Badger T, et al. Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations. Toxicol Appl Pharmacol. 2009;236(1):71–7.CrossRefPubMedGoogle Scholar
  55. Yechiel E. The journal of topical formulations, 2005, 1 (3). e Journal. ISSN: 1554-0197.Google Scholar
  56. Yoon CH, Park HJ, Cho YW, Kim EJ, Lee JD, Kang KR, et al. Cigarette smoke extract-induced reduction in migration and contraction in normal human bronchial smooth muscle cells. Korean J Physiol Pharmacol. 2011;15(6):397–403.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesSullivan University College of PharmacyLouisvilleUSA

Personalised recommendations