Spermine protects alpha-synuclein expressing dopaminergic neurons from manganese-induced degeneration

  • Bejoy Vijayan
  • Vishnu Raj
  • Swapna Nandakumar
  • Asha Kishore
  • Anoopkumar ThekkuveettilEmail author
Original Article


Manganese exposure is among the many environmental risk factors linked to the progression of neurodegenerative diseases, such as manganese-induced parkinsonism. In animal models, chronic exposure to manganese causes loss of cell viability, neurodegeneration, and functional deficits. Polyamines, such as spermine, have been shown to rescue animals from age-induced neurodegeneration in an autophagy-dependent manner; nonetheless, it is not understood whether polyamines can prevent manganese-induced toxicity. In this study, we used two model systems, the Caenorhabditis elegans UA44 strain and SK-MEL-28 cells, both expressing the protein alpha-synuclein (α-syn) to determine whether spermine could ameliorate manganese-induced toxicity. Manganese caused a substantial reduction in the viability of SK-MEL-28 cells and hastened neurodegeneration in the UA44 strain. Spermine protected both the SK-MEL-28 cells and the UA44 strain from manganese-induced toxicity. Spermine also reduced the age-associated neurodegeneration observed in the UA44 strain compared with a control strain without α-syn expression and led to improved avoidance behavior in a functional assay. Treatment with berenil, an inhibitor of polyamine catabolism, which leads to increased intracellular polyamine levels, also showed similar cellular protection against manganese toxicity. While both translation blocker cycloheximide and autophagy blocker chloroquine caused a reduction in the cytoprotective effect of spermine, transcription blocker actinomycin D had no effect. This study provides new insights on the effect of spermine in preventing manganese-induced toxicity, which is most likely via translational regulation of several candidate genes, including those of autophagy. Thus, our results indicate that polyamines positively influence neuronal health, even when exposed to high levels of manganese and α-syn, and supplementing polyamines through diet might delay the onset of diseases involving degeneration of dopaminergic neurons.


Aging Alpha-synuclein Autophagy Caenorhabditis elegans Manganese toxicity Neurodegeneration 



We thank Dr. Santhoshkumar T R of Rajiv Gandhi Centre for Biotechnology, Trivandrum, for providing us the SK-MEL-28 cell line. We are grateful to Aswathy A Rejani and Rasitha S Kanakalatha for technical help with the C. elegans experiments.


This work was supported by SCTIMST, Thiruvananthapuram, Kerala, India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10565_2018_9449_Fig6_ESM.png (219 kb)
Fig. S1

Pattern of expression and localization of α-syn in SK-MEL-28 cells (representative images). Scale bar is 100 μM. α-syn, α-synuclein. (PNG 218 kb)

10565_2018_9449_MOESM1_ESM.tif (4.7 mb)
High resolution image (TIF 4795 kb)


  1. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138:155–75.CrossRefGoogle Scholar
  2. Anderson JG, Cooney PT, Erikson KM. Inhibition of DAT function attenuates manganese accumulation in the globus pallidus. Environ Toxicol Pharmacol. 2007;23:179–84.CrossRefGoogle Scholar
  3. Angeli S, Barhydt T, Jacobs R, Killilea DW, Lithgow GJ, Andersen JK. Manganese disturbs metal and protein homeostasis in Caenorhabditis elegans. Metallomics. 2014;6:1816–23.CrossRefGoogle Scholar
  4. Assimakopoulos SF, Konstantinou D, Georgiou C, Chroni E. Metabolism of polyamines and oxidative stress in the brain of cholestatic rats. Amino Acids. 2010;38:973–4.CrossRefGoogle Scholar
  5. Aydemir TB, Kim MH, Kim J, Colon-Perez LM, Banan G, Mareci TH, et al. Metal transporter Zip14 (Slc39a14) deletion in mice increases manganese deposition and produces neurotoxic signatures and diminished motor activity. J Neurosci. 2017;37:5996–6006.CrossRefGoogle Scholar
  6. Beck G, Munno DW, Levy Z, Dissel HM, van-Minnen J, Syed NI, et al. Neurotrophic activities of trk receptors conserved over 600 million years of evolution. J Neurobiol. 2004;60:12–20.CrossRefGoogle Scholar
  7. Bendor JT, Logan TP, Edwards RH. The function of α-synuclein. Neuron. 2013;79:1044–66.CrossRefGoogle Scholar
  8. Benedetto A, Au C, Avila DS, Milatovic D, Aschner M. Extracellular dopamine potentiates Mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3–dependent manner in Caenorhabditis elegans. PLoS Genet. 2010;6:e1001084.CrossRefGoogle Scholar
  9. Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol. 2011;25:191–203.CrossRefGoogle Scholar
  10. Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF. Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol. 1993;120:89–94.CrossRefGoogle Scholar
  11. Büttner S, Broeskamp F, Sommer C, Markaki M, Habernig L, Alavian-Ghavanini A, et al. Spermidine protects against α-synuclein neurotoxicity. Cell Cycle. 2014;13:3903–8.CrossRefGoogle Scholar
  12. Cai T, Yao T, Zheng G, Chen Y, Du K, Cao Y, et al. Manganese induces the overexpression of α-synuclein in PC12 cells via ERK activation. Brain Res. 2010;1359:201–7.CrossRefGoogle Scholar
  13. Carboni E, Lingor P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics. 2015;7:395–404.CrossRefGoogle Scholar
  14. Clarkson AN, Liu H, Pearson L, Kapoor M, Harrison JC, Sammut IA, et al. Neuroprotective effects of spermine following hypoxic-ischemic-induced brain damage: a mechanistic study. FASEB J. 2004;18:1114–6.CrossRefGoogle Scholar
  15. Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G, et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology. 2007;68:1557–62.CrossRefGoogle Scholar
  16. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11:1305–14.CrossRefGoogle Scholar
  17. Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B. Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics. 2014;6:921–31.CrossRefGoogle Scholar
  18. Fitsanakis VA, Zhang N, Anderson JG, Erikson KM, Avison MJ, Gore JC, et al. Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicol Sci. 2008;103:116–24.CrossRefGoogle Scholar
  19. Frühauf PKS, Porto Ineu R, Tomazi L, Duarte T, Mello CF, Rubin MA. Spermine reverses lipopolysaccharide-induced memory deficit in mice. J Neuroinflammation. 2015;12:3.CrossRefGoogle Scholar
  20. Frühauf-Perez PK, Temp FR, Pillat MM, Signor C, Wendel AL, Ulrich H, et al. Spermine protects from LPS-induced memory deficit via BDNF and TrkB activation. Neurobiol Learn Mem. 2018;149:135–43.CrossRefGoogle Scholar
  21. Fukushima T, Tan X, Luo Y, Kanda H. Relationship between blood levels of heavy metals and Parkinson’s disease in China. Neuroepidemiology. 2010;34:18–24.CrossRefGoogle Scholar
  22. Gavin CE, Gunter KK, Gunter TE. Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology. 1999;20:445–53.Google Scholar
  23. Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet. 2009;41:308–15.CrossRefGoogle Scholar
  24. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, et al. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology. 1999;20:239–47.Google Scholar
  25. Guilarte TR. Manganese neurotoxicity: new perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates. Front Aging Neurosci. 2013;5:23.CrossRefGoogle Scholar
  26. Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A, Koemans TS, et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat Neurosci. 2013;16:1453–60.CrossRefGoogle Scholar
  27. Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA. C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dyn. 2010;239:1282–95.CrossRefGoogle Scholar
  28. Harrington AJ, Knight AL, Caldwell GA, Caldwell KA. Caenorhabditis elegans as a model system for identifying effectors of α-synuclein misfolding and dopaminergic cell death associated with Parkinson’s disease. Methods. 2011;53:220–5.CrossRefGoogle Scholar
  29. Hilliard MA, Bargmann CI, Bazzicalupo P. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol. 2002;12:730–4.CrossRefGoogle Scholar
  30. Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M. Manganese is essential for neuronal health. Annu Rev Nutr. 2015;35:71–108.CrossRefGoogle Scholar
  31. Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int J Biochem Cell Biol. 2010;42:39–51.CrossRefGoogle Scholar
  32. Kang SS, Zhang Z, Liu X, Manfredsson FP, Benskey MJ, Cao X, et al. TrkB neurotrophic activities are blocked by α-synuclein, triggering dopaminergic cell death in Parkinson’s disease. Proc Natl Acad Sci U S A. 2017;114:10773–8.CrossRefGoogle Scholar
  33. Kaur G, Kumar V, Arora A, Tomar A, Ashish SR, et al. Affected energy metabolism under manganese stress governs cellular toxicity. Sci Rep. 2017;7:11645.CrossRefGoogle Scholar
  34. Krüger A, Vowinckel J, Mülleder M, Grote P, Capuano F, Bluemlein K, et al. Tpo1-mediated spermine and spermidine export controls cell cycle delay and times antioxidant protein expression during the oxidative stress response. EMBO Rep. 2013;14:1113–9.CrossRefGoogle Scholar
  35. Kwakye GF, Paoliello MMB, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health. 2015;12:7519–40.CrossRefGoogle Scholar
  36. Lechpammer M, Clegg MS, Muzar Z, Huebner PA, Jin L-W, Gospe SM. Pathology of inherited manganese transporter deficiency. Ann Neurol. 2014;75:608–12.CrossRefGoogle Scholar
  37. Lee BR, Matsuo Y, Cashikar AG, Kamitani T. Role of Ser129 phosphorylation of α-synuclein in melanoma cells. J Cell Sci. 2013;126:696–704.CrossRefGoogle Scholar
  38. Lewandowski NM, Ju S, Verbitsky M, Ross B, Geddie ML, Rockenstein E, et al. Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc Natl Acad Sci U S A. 2010;107:16970–5.CrossRefGoogle Scholar
  39. Leyva-Illades D, Chen P, Zogzas CE, Hutchens S, Mercado JM, Swaim CD, et al. SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity. J Neurosci. 2014;34:14079–95.CrossRefGoogle Scholar
  40. Li Y, Sun L, Cai T, Zhang Y, Lv S, Wang Y, et al. α-Synuclein overexpression during manganese-induced apoptosis in SH-SY5Y neuroblastoma cells. Brain Res Bull. 2010;81:428–33.CrossRefGoogle Scholar
  41. Lucchini RG, Martin CJ, Doney BC. From manganism to manganese-induced parkinsonism: a conceptual model based on the evolution of exposure. NeuroMolecular Med. 2009;11:311–21.CrossRefGoogle Scholar
  42. Mandal S, Mandal A, Johansson HE, Orjalo AV, Park MH. Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc Natl Acad Sci. 2013;110:2169–74.CrossRefGoogle Scholar
  43. Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol. 2015;427:3389–406.CrossRefGoogle Scholar
  44. Minois N, Carmona-Gutierrez D, Bauer MA, Rockenfeller P, Eisenberg T, Brandhorst S, et al. Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and -independent pathways. Cell Death Dis. 2012;3:e401.CrossRefGoogle Scholar
  45. Minois N, Rockenfeller P, Smith TK, Carmona-Gutierrez D. Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition. PLoS One. 2014;9:e102435.CrossRefGoogle Scholar
  46. Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol. 2011;192:615–29.CrossRefGoogle Scholar
  47. Moussaud S, Jones DR, Moussaud-Lamodière EL, Delenclos M, Ross OA, McLean PJ. Alpha-synuclein and tau: teammates in neurodegeneration? Mol Neurodegener. 2014;9:43.CrossRefGoogle Scholar
  48. Nandakumar S, Vijayan B, Kishore A, Thekkuveettil A. Autophagy enhancement is rendered ineffective in presence of α-synuclein in melanoma cells. J Cell Commun Signal. 2017;11:381–4.CrossRefGoogle Scholar
  49. Nishimura K, Okudaira H, Ochiai E, Higashi K, Kaneko M, Ishii I, et al. Identification of proteins whose synthesis is preferentially enhanced by polyamines at the level of translation in mammalian cells. Int J Biochem Cell Biol. 2009;41:2251–61.CrossRefGoogle Scholar
  50. Noro T, Namekata K, Azuchi Y, Kimura A, Guo X, Harada C, et al. Spermidine ameliorates neurodegeneration in a mouse model of normal tension glaucoma. Invest Ophthalmol Vis Sci. 2015;56:5012–9.CrossRefGoogle Scholar
  51. Park J-S, Blair NF, Sue CM. The role of ATP13A2 in Parkinson’s disease: clinical phenotypes and molecular mechanisms. Mov Disord. 2015;30:770–9.CrossRefGoogle Scholar
  52. Peneder TM, Scholze P, Berger ML, Reither H, Heinze G, Bertl J, et al. Chronic exposure to manganese decreases striatal dopamine turnover in human alpha-synuclein transgenic mice. Neuroscience. 2011;180:280–92.CrossRefGoogle Scholar
  53. Peres TV, Parmalee NL, Martinez-Finley EJ, Aschner M. Untangling the manganese-α-synuclein web. Front Neurosci. 2016;10(364).Google Scholar
  54. Perez-Leal O, Barrero CA, Clarkson AB, Casero RA, Merali S. Polyamine-regulated translation of spermidine/spermine-N1-acetyltransferase. Mol Cell Biol. 2012;32:1453–67.CrossRefGoogle Scholar
  55. Perl DP, Olanow CW. The neuropathology of manganese-induced parkinsonism. J Neuropathol Exp Neurol. 2007;66:675–82.CrossRefGoogle Scholar
  56. Pifl C, Khorchide M, Kattinger A, Reither H, Hardy J, Hornykiewicz O. α-Synuclein selectively increases manganese-induced viability loss in SK-N-MC neuroblastoma cells expressing the human dopamine transporter. Neurosci Lett. 2004;354:34–7.CrossRefGoogle Scholar
  57. Pucciarelli S, Moreschini B, Micozzi D, De Fronzo GS, Carpi FM, Polzonetti V, et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15:590–5.CrossRefGoogle Scholar
  58. Pupyshev AB, Korolenko TA, Akopyan AA, Amstislavskaya TG, Tikhonova MA. Suppression of autophagy in the brain of transgenic mice with overexpression of А53Т-mutant α-synuclein as an early event at synucleinopathy progression. Neurosci Lett. 2018;672:140–4.CrossRefGoogle Scholar
  59. Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90:467–77.CrossRefGoogle Scholar
  60. Rigobello MP, Toninello A, Siliprandi D, Bindoli A. Effect of spermine on mitochondrial glutathione release. Biochem Biophys Res Commun. 1993;194:1276–81.CrossRefGoogle Scholar
  61. Robison G, Sullivan B, Cannon JR, Pushkar Y. Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics. 2015;7:748–55.CrossRefGoogle Scholar
  62. Sakamoto A, Terui Y, Yoshida T, Yamamoto T, Suzuki H, Yamamoto K, et al. Three members of polyamine modulon under oxidative stress conditions: two transcription factors (SoxR and EmrR) and a glutathione synthetic enzyme (GshA). PLoS One. 2015;10:e0124883.CrossRefGoogle Scholar
  63. Sava IG, Battaglia V, Rossi CA, Salvi M, Toninello A. Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic Biol Med. 2006;41:1272–81.CrossRefGoogle Scholar
  64. Settivari R, Levora J, Nass R. The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in caenorhabditis elegans models of manganism and parkinson disease. J Biol Chem. 2009;284:35758–68.CrossRefGoogle Scholar
  65. Stanwood GD, Leitch DB, Savchenko V, Wu J, Fitsanakis VA, Anderson DJ, et al. Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. J Neurochem. 2009;110:378–89.CrossRefGoogle Scholar
  66. Stiernagle T. Maintenance of C. elegans. WormBook [Internet]. 2006 [cited 2018 May 29]; Available from:
  67. Stredrick DL, Stokes AH, Worst TJ, Freeman WM, Johnson EA, Lash LH, et al. Manganese-induced cytotoxicity in dopamine-producing cells. Neurotoxicology. 2004;25:543–53.CrossRefGoogle Scholar
  68. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. John Wiley & Sons, Inc.; 2001. Available from:
  69. Tuschl K, Clayton PT, Gospe SM, Gulab S, Ibrahim S, Singhi P, et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2012;90:457–66.CrossRefGoogle Scholar
  70. Vivó M, de Vera N, Cortés R, Mengod G, Camón L, Martínez E. Polyamines in the basal ganglia of human brain. Influence of aging and degenerative movement disorders. Neurosci Lett. 2001;304:107–11.CrossRefGoogle Scholar
  71. Winslow AR, Chen C-W, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, et al. α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010;190:1023–37.CrossRefGoogle Scholar
  72. Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics. 2017;9:1028–46.CrossRefGoogle Scholar
  73. Zondler L, Kostka M, Garidel P, Heinzelmann U, Hengerer B, Mayer B, et al. Proteasome impairment by α-synuclein. PLoS One. 2017;12:e0184040.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Bejoy Vijayan
    • 1
  • Vishnu Raj
    • 2
  • Swapna Nandakumar
    • 1
  • Asha Kishore
    • 1
  • Anoopkumar Thekkuveettil
    • 2
    Email author
  1. 1.Comprehensive Care Centre for Movement Disorders, Department of NeurologySree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
  2. 2.Division of Molecular Medicine, Department of Applied Biology, Biomedical Technology WingSree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia

Personalised recommendations