Preparation and Application of Ordered Mesoporous Metal Oxide Catalytic Materials

  • Zihao Fu
  • Guodong Zhang
  • Zhicheng TangEmail author
  • Haitao Zhang


The ordered mesoporous metal oxides as catalytic carrier or active center have been reported by many literatures. The large specific surface area and ordered mesoporous structure had caused great concern in the field of catalysis. In the catalytic reaction, the ordered mesoporous materials had great mechanical properties and the active centers had strong interaction between each other. There were obviously advantages of these ordered mesoporous materials than bulk materials or routine nano-materials in the catalytic conversion of volatile organic compound, CO, NOx and other polluting gases. At present, researchers prepared a variety of ordered mesoporous metal oxides by different synthetic methods. Based on the analysis and summary of the literature, this paper briefly reviewed the preparation methods and application of ordered mesoporous metal oxide catalysts and the prospect of future development is worth expecting.


Ordered mesoporous metal oxide Preparation method Catalytic application Research progress 



This work was supported by the National Natural Science Foundation of China (51808529, 51908535, 21707145), the Major Project of Inner Mongolia Science and Technology, Key Science and Technology Program of Lanzhou City (2018-RC-65), Province Natural Science Foundation of Gansu (17JR5RA317, 18JR3RA383), the Foundation of Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CMAR-2019-3), the Science and Technology Program of Chengguan district, lanzhou city (2019JSCX0042) and West Light Foundation of The Chinese Academy of Sciences.


  1. 1.
    Zhang D, Liu L, Zhang Y (2019) Nanotechnology 30:1–30Google Scholar
  2. 2.
    Teng Y, Li Y, Zhang Z (2018) Chem Eur J 24:14982–14988PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M (2013) Chem Soc Rev 42:4036–4053PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Huang A, He Y, Zhou Y (2019) J Mater Sci 54:949–973CrossRefGoogle Scholar
  5. 5.
    Bingwa N, Antonels NC, Williams MB, Haumann M, Meijboom R (2018) Catal Lett 148:2957–2966CrossRefGoogle Scholar
  6. 6.
    Ray C, Pal T (2017) J Mater Chem A 5:9465–9487CrossRefGoogle Scholar
  7. 7.
    Yamashita T, Lu DL, Kondo JN, Hara M, Domen K (2003) Chem Lett 32:1034–1035CrossRefGoogle Scholar
  8. 8.
    Ghaleno MR, Ghaffari-Moghaddam M, Khajeh M, Oveisi AR, Bohlooli M (2019) J Colloid Interface Sci 535:214–226PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Liu Y, Pan Y, Wang H, Liu Y, Liu C (2018) Chin J Catal 39:1543–1551CrossRefGoogle Scholar
  10. 10.
    Zhu N, Qiao J, Ye Y, Yan T (2018) J Environ Manag 211:73–82CrossRefGoogle Scholar
  11. 11.
    Bass JD, Grosso D, Boissiere C, Belamie E, Coradin T, Sanchez C (2007) Chem Mater 19:4349–4356CrossRefGoogle Scholar
  12. 12.
    Du G, Xu Y, Zheng S, Xue H, Pang H (2019) Small 15:1–31Google Scholar
  13. 13.
    Jiang Z, Zhu Z, Guo W, Chen M, Shangguan W (2017) J Mater Chem A 5:20696–20708CrossRefGoogle Scholar
  14. 14.
    Deng S, Xiao X, Xing X, Wu J, Wen W, Wang Y (2015) J Mol Catal A 398:79–85CrossRefGoogle Scholar
  15. 15.
    Sun S, Zhao X, Yang M, Wu L, Wen Z, Shen X (2016) Sci Rep UK 6:1–9CrossRefGoogle Scholar
  16. 16.
    Bhanja P, Kayal U, Bhaumik A (2018) Mol Catal 451:220–227CrossRefGoogle Scholar
  17. 17.
    Yadav R, Muralidhar A, Shamna A, Aghila P, Gurrala L, Sakthivel A (2018) Catal Lett 148:1407–1415CrossRefGoogle Scholar
  18. 18.
    Li L, Han W, Dong F, Zong L, Tang Z, Zhang J (2017) Microporous Mesoporous Mater 249:1–9CrossRefGoogle Scholar
  19. 19.
    Zhang W, He H, Tian Y (2019) Chem Sci 10:1664–1670PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tang HL, Ren Y, Wei SH, Liu G, Xu XX (2019) Rare Met 38:453–458CrossRefGoogle Scholar
  21. 21.
    Lan K, Liu Y, Zhang W (2018) J Am Chem Soc 140:4135–4143PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Guo Y, Gao Y, Li X (2019) Chem Eng J 362:41–52CrossRefGoogle Scholar
  23. 23.
    Wang Q, Zhang Y, Zhou Y (2016) RSC Adv 6:67173–67183CrossRefGoogle Scholar
  24. 24.
    Xu L, Song H, Chou L (2012) ACS Catal 2:1331–1342CrossRefGoogle Scholar
  25. 25.
    Liu Q, Tian Y, Ai H (2016) RSC Adv 6:20971–20978CrossRefGoogle Scholar
  26. 26.
    Tueysuez H, Weidenthaler C, Grewe T, Salabas EL, Romero MJB, Schueth F (2012) Inorg Chem 51:11745–11752CrossRefGoogle Scholar
  27. 27.
    Ding C, Ma Y, Lai X (2017) ACS Appl Mater Interfaces 9:18170–18177PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Antonelli DM, Ying JY (1995) Angew Chem Int Ed 34:2014–2017CrossRefGoogle Scholar
  29. 29.
    Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1999) Chem Mater 11:2813–2826CrossRefGoogle Scholar
  30. 30.
    Xiong Y, Gu D, Deng X (2018) Microporous Mesoporous Mater 268:162–169CrossRefGoogle Scholar
  31. 31.
    Yuan Q, Yin AX, Luo C (2008) J Am Chem Soc 130:3465–3472PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Morris SM, Fulvio PF, Jaroniec M (2008) J Am Chem Soc 130:15210–15216PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mei J, Xie J, Qu Z, Hu X, Yan N (2018) Mol Catal 461:60–66CrossRefGoogle Scholar
  34. 34.
    Mei J, Huang W, Qu Z, Hu X, Yan N (2017) J Colloid Interface Sci 505:870–883PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Liu S, Wang Z, Zhao H, Fei T, Zhang T (2014) Sens Actuators B 197:342–349CrossRefGoogle Scholar
  36. 36.
    Wu Z, Deng J, Liu Y (2015) J Catal 332:13–24CrossRefGoogle Scholar
  37. 37.
    Su Y, Dai L, Zhang Q (2016) Catal Surv Asia 20:231–240CrossRefGoogle Scholar
  38. 38.
    Sun M, Hu W, Cheng T (2019) Appl Surf Sci 467:723–739CrossRefGoogle Scholar
  39. 39.
    Ye Q, Zhao JS, Huo FF, Wang D, Cheng SY, Kang TF, Dai HX (2013) Microporous Mesoporous Mater 172:20–29CrossRefGoogle Scholar
  40. 40.
    Zhang G, Liu J, Xu Y, Sun Y (2019) Int J Hydrog Energy 44:4809–4820CrossRefGoogle Scholar
  41. 41.
    Xin Y, Jiang P, Yu MQ, Gu HC, Li Q, Zhang ZL (2014) J Mater Chem A 2:6419–6425CrossRefGoogle Scholar
  42. 42.
    Amini E, Rezaei M, Sadeghinia M (2013) Chin J Catal 34:1762–1767CrossRefGoogle Scholar
  43. 43.
    Amini E, Rezaei M (2015) Chin J Catal 36:1711–1718CrossRefGoogle Scholar
  44. 44.
    Sobhani M, Tavakoli H, Chermahini MD, Kazazi M (2019) Ceram Int 45:1385–1391CrossRefGoogle Scholar
  45. 45.
    Chirra S, Venkatathri N (2019) Mater Res Express 6:1–10Google Scholar
  46. 46.
    Xiao Y, Zheng X, Chen X, Jiang L, Zheng Y (2017) Ind Eng Chem Res 56:1687–1695CrossRefGoogle Scholar
  47. 47.
    Xu S, Hong Y, Chen C, Li S, Xiao L, Fan J (2013) J Mater Chem A 1:6191–6198CrossRefGoogle Scholar
  48. 48.
    Taromi AA, Kaliaguine S (2017) Microporous Mesoporous Mater 248:179–191CrossRefGoogle Scholar
  49. 49.
    Zhang F, Sun D, Yu C, Yin Y, Dai H, Shao G (2015) N J Chem 39:3065–3070CrossRefGoogle Scholar
  50. 50.
    Fei C, Li D, Mao X, Guo Y, Jing W (2018) Chin J Chem Eng 26:1862–1872CrossRefGoogle Scholar
  51. 51.
    Liou TH, Hung LW, Liu CL, Zhang TY (2018) J. Porous Mater 25:1337–1347CrossRefGoogle Scholar
  52. 52.
    Wu Q, Liu C, Peng JJ, Liu FJ (2017) RSC Adv 7:19557–19564CrossRefGoogle Scholar
  53. 53.
    Han W, Zhao H, Dong F, Tang Z (2018) Nanoscale 10:21307–21319PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Franken T, Mani CM, Palkovits R (2016) Microporous Mesoporous Mater 221:91–100CrossRefGoogle Scholar
  55. 55.
    Haghighatzadeh A, Mazinani B, Aalari SM (2017) Acta Phys Pol A 132:420–422CrossRefGoogle Scholar
  56. 56.
    Nguyen VQ, Tran MH, Trinh QT, Le AT, Tran QH, Nguyen DH (2013) Curr Appl Phys 13:1581–1588CrossRefGoogle Scholar
  57. 57.
    Hu L, Ji S, Jiang Z, Song H, Wu P, Lint Q (2007) J Phys Chem C 111:15173–15184CrossRefGoogle Scholar
  58. 58.
    Zhang C, Zhang Z, Wang D, Yin F, Zhang Y (2017) J Alloys Compd 714:126–132CrossRefGoogle Scholar
  59. 59.
    Quiroa-Montalvan CM, Gomez-Pineda LE, Alvarez-Contreras L, Valdez R, Arjona N, Oropeza-Guzman MT (2017) J Electrochem Soc 164:B304–B313CrossRefGoogle Scholar
  60. 60.
    Ma J, Xiang D, Li Z, Li Q, Wang X, Yin L (2013) CrystEngComm 15:6800–6807CrossRefGoogle Scholar
  61. 61.
    Ding Y, Dan H, Dong X, Xian Q, Wang Y, Lu X (2017) Mater Chem Phys 192:156–160CrossRefGoogle Scholar
  62. 62.
    Wang Y, Wang S, Li C (2016) Chem Commun 52:10217–10220CrossRefGoogle Scholar
  63. 63.
    Zhao Y, Dong F, Han W, Zhao H, Tang Z (2019) Microporous Mesoporous Mater 273:1–9CrossRefGoogle Scholar
  64. 64.
    Xie T, Min J, Liu J (2018) J Alloys Compd 754:72–77CrossRefGoogle Scholar
  65. 65.
    Wang R, Lan K, Liu B, Yu Y, Chen A, Li W (2019) Chem Phys 516:48–54CrossRefGoogle Scholar
  66. 66.
    Liu Y, Lan K, Bagabas AA (2016) Small 12:860–867PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Blin JL, Stebe MJ, Carmes TR (2012) Colloid Surf A 407:177–185CrossRefGoogle Scholar
  68. 68.
    Zhou Z, Yu Y, Yu P, Qin J, Dai S, Wu W (2017) React Kinet Mech Catal 120:295–305CrossRefGoogle Scholar
  69. 69.
    Zhou Z, Yu P, Qin J (2016) J Porous Mater 23:239–245CrossRefGoogle Scholar
  70. 70.
    Li ZX, Shi FB, Ding Y, Zhang T, Yan CH (2011) Langmuir 27:14589–14593PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Li G, Zhang D, Yu JC (2009) Phys Chem Chem Phys 11:3775–3782PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Yuan E, Wu C, Liu G, Wang L (2016) Appl Catal A 525:119–127CrossRefGoogle Scholar
  73. 73.
    Xu L, Zhang J, Wang F (2015) RSC Adv 5:48256–48268CrossRefGoogle Scholar
  74. 74.
    Xu L, Lian X, Chen M (2018) Int J Hydrog Energy 43:17172–17184CrossRefGoogle Scholar
  75. 75.
    Xu L, Song H, Chou L (2013) Int J Hydrog Energy 38:7307–7325CrossRefGoogle Scholar
  76. 76.
    Xu L, Yang H, Chen M (2017) J CO2 Util 21:200–210CrossRefGoogle Scholar
  77. 77.
    Xu L, Wang F, Chen M (2017) J CO2 Util 18:1–14CrossRefGoogle Scholar
  78. 78.
    Xiang X, Zhao H, Yang J (2016) Eur J Inorg Chem 2016:3396–3404CrossRefGoogle Scholar
  79. 79.
    Liu Q, Zhong Z, Gu F (2016) J Catal 337:221–232CrossRefGoogle Scholar
  80. 80.
    Liu Q, Gao J, Gu F (2015) J Catal 326:127–138CrossRefGoogle Scholar
  81. 81.
    Liu Q, Gu F, Wang X (2015) J Catal 5:84186–84194Google Scholar
  82. 82.
    Cheng M, Zhao H, Yang J (2019) Catal Lett 149:1326–1336CrossRefGoogle Scholar
  83. 83.
    Cai W, Yu J, Anand C, Vinu A, Jaroniec M (2011) Chem Mater 23:1147–1157CrossRefGoogle Scholar
  84. 84.
    Pan D, Chen W, Huang X (2018) J Colloid Interface Sci 529:432–443PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lin LY, Wang C, Bai H (2015) Chem Eng J 264:835–844CrossRefGoogle Scholar
  86. 86.
    Li Y, Luo W, Qin N (2014) Angew Chem Int Ed 53:9035–9040CrossRefGoogle Scholar
  87. 87.
    Crepaldi EL, Illia GS, Grosso D, Albouy PA, Sanchez C (2011) Chem Commun 1582–1583Google Scholar
  88. 88.
    Gong H, Zhu J, Lv K, Xiao P, Zhao Y (2015) N J Chem 39:9380–9388CrossRefGoogle Scholar
  89. 89.
    Xia Y, Zhao Y, Li Y, Hu F, Zhang L, Chen W (2016) J Porous Mater 23:1591–1595CrossRefGoogle Scholar
  90. 90.
    Du YC, Wang XK, Wang JS, Wu JS, Qi C (2017) J Nanoelectron Optoelectron 12:518–525CrossRefGoogle Scholar
  91. 91.
    Tidahy HL, Hosseni M, Siffert S (2008) Catal Today 137:335–339CrossRefGoogle Scholar
  92. 92.
    Nedumaran D, Pandurangan A (2013) J Porous Mater 20:897–908CrossRefGoogle Scholar
  93. 93.
    Cakiryilmaz N, Arbag H, Oktar N, Dogu G, Dogu T (2019) Catal Today 323:191–199CrossRefGoogle Scholar
  94. 94.
    Mayani SV, Mayani VJ, Kim SW (2013) Can J Chem Eng 91:1270–1280CrossRefGoogle Scholar
  95. 95.
    Zukal A, Pastva J, Cejka J (2013) Microporous Mesoporous Mater 167:44–50CrossRefGoogle Scholar
  96. 96.
    Parma A, Freris I, Riello P (2012) J Mater Chem 22:19276–19288CrossRefGoogle Scholar
  97. 97.
    Furtado AMB, Wang Y, Glover TG, Van MDL (2011) Microporous Mesoporous Mater 142:730–739CrossRefGoogle Scholar
  98. 98.
    Jang M, Shin EW, Park JK, Choi SI (2003) Environ Sci Technol 37:5062–5070PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Kowalczyk A, Swies A, Gil B, Rutkowska M (2018) Appl Catal B 237:927–937CrossRefGoogle Scholar
  100. 100.
    Pourahmad A (2013) Spectrochim Acta A 103:193–198CrossRefGoogle Scholar
  101. 101.
    Zheng J, Zhu W, Ma C, Hou Y, Zhang W, Wang Z (2010) React Kinet Mech Catal 99:455–462CrossRefGoogle Scholar
  102. 102.
    Macina D, Opiola A, Rutkowska M (2017) Mater Chem Phys 187:60–71CrossRefGoogle Scholar
  103. 103.
    Romero MS, Divakar D, Aranzabal A, Gonzalez JRV, Gonzalez JAM (2016) Appl Catal B 180:210–218CrossRefGoogle Scholar
  104. 104.
    Shen Y, Wang F, Liu W, Zhang X (2018) J Porous Mater 25:1587–1595CrossRefGoogle Scholar
  105. 105.
    Wang J, Xu WM, Bao HF, Shi YF (2015) Nanoscale 7:4468–4474PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Sari A, Tuzen M (2013) Microporous Mesoporous Mater 170:155–163CrossRefGoogle Scholar
  107. 107.
    Armatas GS, Kanatzidis MG (2006) Science 313:817–820PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Qu Q, Pan GL, Lin YT, Xu CW (2018) Int J Hydrog Energy 43:14252–14264CrossRefGoogle Scholar
  109. 109.
    Su Y, Tang Z, Han W, Song Y, Lu G (2015) Catal Surv Asia 19:68–77CrossRefGoogle Scholar
  110. 110.
    Yang N, Pang F, Ge J (2015) J Mater Chem A 3:1133–1141CrossRefGoogle Scholar
  111. 111.
    Wang Y, Ren J, Wang Y (2008) J Phys Chem C 112:15293–15298CrossRefGoogle Scholar
  112. 112.
    Wang X, Wen W, Mi J, Li X, Wang R (2015) Appl Catal B 176:454–463CrossRefGoogle Scholar
  113. 113.
    Li Z, Li Z, Oh HY, Hong GH, Park JS, Kim JM (2018) Catal Today 307:237–242CrossRefGoogle Scholar
  114. 114.
    Wan L, Cui X, Chen H, Shi J (2010) Mater Lett 64:1379–1382CrossRefGoogle Scholar
  115. 115.
    Yang S, Zhao H, Dong F, Zha F, Tang Z (2019) Mol Catal 463:119–129CrossRefGoogle Scholar
  116. 116.
    Tan H, Tang J, Zhou X (2018) Chem Commun 54:9494–9497CrossRefGoogle Scholar
  117. 117.
    Yuan X, Wang X, Tang Q, Zhang Y, Guo S (2017) J Mater Sci 52:13163–13172CrossRefGoogle Scholar
  118. 118.
    He C, Yu Y, Chen C (2013) RSC Adv 3:19639–19656CrossRefGoogle Scholar
  119. 119.
    Habib S, Launay F, El Zakhem H (2013) Mater Res Bull 48:1288–1295CrossRefGoogle Scholar
  120. 120.
    Zhang CX, Dai YM, He XC, Ba ZX, Zhou HZ (2016) Rare Met Mater Eng 45:1093–1099CrossRefGoogle Scholar
  121. 121.
    Zhao Z, Zhang X, Zhou H, Liu G, Kong M, Wang G (2017) Microporous Mesoporous Mater 242:50–58CrossRefGoogle Scholar
  122. 122.
    Tao M, Xin Z, Meng X, Bian Z, Lv Y (2017) Fuel 188:267–276CrossRefGoogle Scholar
  123. 123.
    Suzuki N, Jiang X, Malgras V, Yamauchi Y, Islam A, Han L (2015) Chem Lett 44:656–658CrossRefGoogle Scholar
  124. 124.
    Lim TH, Park SB, Kim JM, Kim DH (2017) J Mol Catal A 426:68–74CrossRefGoogle Scholar
  125. 125.
    de Zarate DO, Boissiere C, Grosso D (2005) N J Chem 29:141–144CrossRefGoogle Scholar
  126. 126.
    Zhang J, Cui S, Ding Y, Yang X, Guo K, Zhao J (2018) Ceram Int 44:7858–7866CrossRefGoogle Scholar
  127. 127.
    Hwang HJ, Lee Y, Lee C (2018) Micromachines Basel 9:1–11Google Scholar
  128. 128.
    Xu L, Wang F, Chen M (2016) ChemCatChem 8:2536–2548CrossRefGoogle Scholar
  129. 129.
    Bustos HFP, Ortiz CJL, de la Rivera RJ (2019) Fuel 239:191–201CrossRefGoogle Scholar
  130. 130.
    Zhao JC, Tang BH, Sun L, Zheng J, Cao J, Xu JL (2012) Mater Technol 27:328–332CrossRefGoogle Scholar
  131. 131.
    Ding Y, Zhu J, Zhang D, Jiang S, Sarwar KO, Chen S (2017) Desalin Water Treat 90:299–310CrossRefGoogle Scholar
  132. 132.
    Lin R, Yue W, Niu F, Ma J (2016) Electrochim Acta 205:85–94CrossRefGoogle Scholar
  133. 133.
    Koo HM, Ahn CI, Lee DH (2018) Fuel 225:460–471CrossRefGoogle Scholar
  134. 134.
    Ren Y, Ma Z, Bruce PG (2012) Chem Soc Rev 41:4909–4927PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Gong X, Wang WW, Fu XP (2018) Fuel 229:217–226CrossRefGoogle Scholar
  136. 136.
    Wang T, Meng X, Li P (2014) Nano Energy 9:50–60CrossRefGoogle Scholar
  137. 137.
    Li L, Huo M, Zhang Y, Li J (2017) J Porous Mater 24:1613–1625CrossRefGoogle Scholar
  138. 138.
    Cui Y, Lian X, Xu L (2019) Materials 12:1–28Google Scholar
  139. 139.
    Sinha AK, Suzuki K (2005) Int J Appl Ceram Technol 2:476–481CrossRefGoogle Scholar
  140. 140.
    Ryu HW, Song MY, Park JS (2019) Environ Res 172:649–657PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Masunga N, Tito GS, Meijboom R (2018) Appl Catal A 552:154–167CrossRefGoogle Scholar
  142. 142.
    Zhan S, Zhang H, Zhang Y, Shi Q, Li Y, Li X (2017) Appl Catal B 203:199–209PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Wang X, Wen W, Su Y, Wang R (2015) RSC Adv 5:63135–63141CrossRefGoogle Scholar
  144. 144.
    Ravat V, Mantri DB, Selvam P, Aghalayam P (2009) J Mol Catal A 314:49–54CrossRefGoogle Scholar
  145. 145.
    Tang J, Wang T, Sun X (2013) Microporous Mesoporous Mater 177:105–112CrossRefGoogle Scholar
  146. 146.
    Liu S, Guo E, Yin L (2012) J Mater Chem 22:5031–5041CrossRefGoogle Scholar
  147. 147.
    Wang Y, Yuan H, Zhang H (2019) Res Chem Intermed 45:1073–1086CrossRefGoogle Scholar
  148. 148.
    Wang H, Guo W, Jiang Z (2018) J Catal 361:370–383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zihao Fu
    • 1
    • 2
  • Guodong Zhang
    • 1
  • Zhicheng Tang
    • 1
    Email author
  • Haitao Zhang
    • 3
  1. 1.State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Lanzhou Petrochemical Research Center, Petrochemical Research InstitutePetroChinaLanzhouChina

Personalised recommendations