Advertisement

Role of Cobalt Oxide-Based Catalysts for Styrene Production: A Review on Significance of Various Promoters, Calcination Temperature, Chemical Behavior of Support Materials and Synthesis Procedure

  • Venkata Rao Madduluri
  • Kamaraju Seetha Rama RaoEmail author
Article
  • 10 Downloads

Abstract

The direct CO2 oxidative dehydrogenation of ethyl benzene (ODH-EB) is a great potential for the production of valuable styrene monomer. In contrast, past/present styrene (ST) synthesis is mainly obtained from oxidative dehydrogenation of ethyl benzene (EB) and being transformed into pilot scale under CO2 atmosphere. It was due to few unresolved restrictions existed in the synthesis of styrene monomer using the steam assisted process and commercial ST production technology. These problems are being rectified by ODH-EB process using CO2 as a soft oxidant. Therefore, ODH of EB is well-known high temperature process to convert the EB (petroleum by product) into valuable ST monomer through the utilizing of CO2. Present study clearly explains the concise history of dehydrogenation process used to convert EB to ST monomer, which is essential feedstock in the wide range of industrial commodities production. In this discussion we majorly devoted to design, development and synthesis of different Co based catalysts by applying different support materials such as SiO2, MgO, MgAl2O4 and γ-Al2O3 respectively. Moreover, this study extensively deals with chemical behavior of oxidants, utilization of viable active promoters and its characteristics features in the oxidative dehydrogenation process. Different reaction mechanisms in the ODH of EB process to describe CO2 utilization as well as surface styrene monomer formation and evaluation of other by products were discussed widely in this review paper. The surface acidic and basic chemistry of various support materials, its preparation, utilization and its catalytic activity applications have been discussed. Acidic–basic textural properties of different solid oxide support materials have been extensively illustrated through incorporation of variety active metallic oxide and promoters. The catalyst activity evaluation in ODH of EB process as well as plausible reaction mechanism of styrene monomer formation has been explained.

Graphic Abstract

Keywords

Oxidative dehydrogenation Ethyl benzene Styrene Soft oxidant CO2 

Abbreviations

ODH

Oxidative dehydrogenation

EB

Ethyl benzene

ST

Styrene

TOL

Toluene

BZ

Benzene

RWGSR

Reverse water gas shift reaction

Dehydrogenation oxidants

N2, He and Ar

Soft oxidants

CO2, O2, N2O and SO2

Steam

Water vapor

CA

Co3O4/γ-Al2O3

CMA

Co3O4/MgAl2O4

LA

La3O3/γ-Al2O3

LCA

La3O3/Co3O4/Al2O3

MA

MgAl2O4

CM

Co3O4/MgO

CS

Co3O4/SiO2

COK

12-Centrum voor Oppervlaktechemie & Katalyse

XMA

X denotes the calcination temperature of MgAl2O4 spinel like 600MA, 700MA, 800MA and 900MA respectively

Notes

Acknowledgements

The author, MVR is grateful to the University Grants Commission and Council of Scientific and Industrial Research, New Delhi, India respectively for the award of fellowship and the services provided by the Analytical Division; CSIR-IICT is greatly acknowledged.

References

  1. 1.
    Cavani F, Trifiro F (1995) Appl Catal A Gen 133:219–239Google Scholar
  2. 2.
    Product Focus: Styrene (2002) Chem Week 15:36Google Scholar
  3. 3.
    Profile Chemical (2001) Propylene glycol. Chem Mark Rep 249:37Google Scholar
  4. 4.
    James DH, Castor WM (1994) Styrene. In: Campbell FT, Pfefferkorn R, Rounsaville JF (eds) Ullmann’s encyclopedia of industrial chemistry, vol 25. Wiley-VCH, Weinheim, p 329Google Scholar
  5. 5.
    Kerby KK (1945) US Patent 2,370,797Google Scholar
  6. 6.
    Sundaram KM, Sardina H, Fernandez-Baujin JM, Hildreth JM (1991) Styrene Plant Simul Optim Hydrocarbon Process 70:93Google Scholar
  7. 7.
    Kolios G, Eigenberger G (1999) Chem Eng Sci 54:2637–2646Google Scholar
  8. 8.
    Savoretti AA, Borio DO, Bucala V, Porras JA (1999) Chem Eng Sci 54:205–213Google Scholar
  9. 9.
    Yee AKY, Ray AK, Rangaiah GP (2003) Comput Chem Eng 27:111–130Google Scholar
  10. 10.
    Sheel JGP, Crowe CM (1969) Can J Chem Eng 47:183–196Google Scholar
  11. 11.
    Clough DE, Ramirez WF (1976) AIChE J 22:1097Google Scholar
  12. 12.
    Lee EH (1973) Catal Rev 8:285–305Google Scholar
  13. 13.
    Mohd Bismillah A, Park SE (2012) Energy Environ Sci 5:9419–9437Google Scholar
  14. 14.
    Yasuo O, Takashi A, Satoshi T, Naoto T (2003) Energy Fuels 17:804–809Google Scholar
  15. 15.
    Abdullah I, All H, Ebrahim Vasheghani F, Kambiz S (2007) J Nat Gas Chem 16:115–120Google Scholar
  16. 16.
    Márton K, AdrianaDe S, Hanna ES, Magdolna RM, József V, Anthony AGT (2010) J Mol Catal A: Chem 333:37–45Google Scholar
  17. 17.
    David V, Freek K, John N (2012) Ruud van Ommen. J Catal Sci Technol 2:1221–1233Google Scholar
  18. 18.
    Mohsen M, Hossein A, Ali AM, Masoud K (2012) J Thermodyn Catal 3(2):1–6.  https://doi.org/10.4172/2157-7544.1000113 Google Scholar
  19. 19.
    Eddie M, John MV (2012) J Catal 291:79–86Google Scholar
  20. 20.
    Hyuntae S, Umit SO (2016) Energy Fuels 30:5309–5322Google Scholar
  21. 21.
    Moronta A, Troconis ME, Gonzalez E, Moran C, Sanchez J, Gonzalez A, Quinonez J (2006) Appl Catal A Gen 310:199–204Google Scholar
  22. 22.
    Gonzáleza E, Moronta A (2004) Appl Catal A Gen 258:99–105Google Scholar
  23. 23.
    Braga TP, Campos Sales BM, Pinheiro AN, Herrera WT, Saitovitchb B, Valentini A (2011) Catal Sci Technol 1:1383–1392Google Scholar
  24. 24.
    Madhavi J, Suresh M, Ramesh Babu GV, Sai Prasad PS, David Raju B, Rama-Rao KS (2014) J CO2 Util 8:21–26Google Scholar
  25. 25.
    Ramudu P, Anand N, Mohan V, Muralidhar G, Sai Prasad PS, David Raju B, Rama Rao KS (2015) J Chem Sci 127:701–709Google Scholar
  26. 26.
    Xiao FG, Joong HK, Geon JK (2011) Catal Today 164:336–340Google Scholar
  27. 27.
    Xingnan Y, Yinghong Y, Changxi M, Zaiku X, Weiming H, Zi G (2005) Green Chem 7:524–528Google Scholar
  28. 28.
    Mimuraa N, Takaharaa I, Saitoa M, Hattorib T, Ohkumac K, Andod M (1998) Stud Surf Sci Catal 114:415–418Google Scholar
  29. 29.
    David Raju B, Kwang Min C, Dae-Soo H, Jeong-Boon K, Park SE (2006) Catal Today 115:242–247Google Scholar
  30. 30.
    Li Z, Zili W, Nicholas CN, Aaron DS, Igor IS, Steven HO (2015) ACS Catal 5:6426–6435Google Scholar
  31. 31.
    Engaldas H, Vanama Pavan K, Kuna R, Komandur VRC, Vattikonda VR (2015) Appl Petrochem Res 5:71–80Google Scholar
  32. 32.
    Toshimitsu S, Kiyoharu N (2011) J Jpn Pet Inst 54:66–79Google Scholar
  33. 33.
    Rao KN, Reddy BM, Abhishek B, Yeong-Hui S, Nanzhe J, Sang-Eon P (2009) Appl Catal B Environ 91:649–656Google Scholar
  34. 34.
    Reddy BM, Rao KN, Reddy GK, Khan A, Park SE (2007) J Phys Chem C 111:18751–18758Google Scholar
  35. 35.
    Liu BS, Chang RZ, Jiang L, Liu W, Au CT (2008) J Phy Chem C 112:15490–15501Google Scholar
  36. 36.
    Venugopal AK, Venugopalan AT, Kaliyappan P, Swamy Raja T (2013) Green Chem 15:3259–3267Google Scholar
  37. 37.
    Coulter K, Goodman DW, Moore RG (1995) Catal Lett 31:1–8Google Scholar
  38. 38.
    Sionnest PG (2007) Mater Matters 2:10Google Scholar
  39. 39.
    Chestnoy N, Hull R, Brus LE (1986) J Phys Chem 85:2237Google Scholar
  40. 40.
    Somorjai GA, Rioux RM (2005) Catal Today 100:201Google Scholar
  41. 41.
    Anastas PT, Williamson TC (eds) (1998) Green chemistry: frontiers in chemical synthesis and processes. Oxford University Press, OxfordGoogle Scholar
  42. 42.
    Zalesskiy S, Ananikov V (2012) Organometallics 31:2302–2309Google Scholar
  43. 43.
    Astruc D (ed) Nanoparticles and catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 621Google Scholar
  44. 44.
    Anastas PT, Kirchhoff MM (2002) Acc Chem Res 35:686–694Google Scholar
  45. 45.
    Shaikhutdinov SK, Joseph Y, Kuhrs C, Ranke W, Weiss W (1999) Faraday Discuss 114:363Google Scholar
  46. 46.
    Anastas PT, Heine LG, Williamson TC (eds) (2000) Green chemical syntheses and processes. American Chemical Society, Washington DCGoogle Scholar
  47. 47.
    Kuhrs C, Swoboda M, Weiss W (2001) Top Catal 15:13Google Scholar
  48. 48.
    Anastas PT, Farris CA (eds) (1994) Benign by design: alternative synthetic design for pollution prevention. ACS symposium series, vol 577. American Chemical Society, Washington DCGoogle Scholar
  49. 49.
    Emig G, Hofmann H (1983) J Catal 84:15–26Google Scholar
  50. 50.
    Mross WD (1983) Catal Rev Sci Eng 25:17Google Scholar
  51. 51.
    Dellinger PW, Moore RG, Sherrod FA, Smith AR (1996) US Patent 5,510,552Google Scholar
  52. 52.
    Rase HF (2000) Handbook of commercial catalysts: heterogeneous catalysts. CRC Press, Boca RatonGoogle Scholar
  53. 53.
    Nicolás MB, Carlos RA, Alberto JM (2008) Catal Commun 10:261–265Google Scholar
  54. 54.
    Nazmul AK, Jin-Soo H, Sung HJ (2011) Bull Korean Chem Soc 32:1327–1330Google Scholar
  55. 55.
    Nicolás MB, Andrés FT, Carlos RA, Alberto JM (2013) Appl Catal A Gen 458:28–38Google Scholar
  56. 56.
    Lange JP, Mesters CMAM (2001) Appl Catal A Gen 210:247–255Google Scholar
  57. 57.
    Jean-Paul L, Vincent O (2006) J Catal 238:6–12Google Scholar
  58. 58.
    Mimuraa N, Takaharaa I, Saitoa M, Hattorib T, Ohkumac K, Andod M (1998) Catal Today 45:61–64Google Scholar
  59. 59.
    Venkata Rao M, Venkateshwarlu V, Thirupathaiah K, Ashok Raju M, Nagaiah P, Murali K, David Raju B, Rama Rao KS (2017) Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.07.014 Google Scholar
  60. 60.
    Kumarsrinivasan S, Akrati V, Chinnakonda SG (2012) Green Chem 14:461–471Google Scholar
  61. 61.
    Kustrowski P, Segura Y, Chmielarz L, Surman J, Dziembaj R, Cool P (2006) Catal Today 114:307–313Google Scholar
  62. 62.
    Gaspar NI, Cohen Vadekar AD, Pasternak IS (1975) Can J Chem Eng 53:79–82Google Scholar
  63. 63.
    Jean-Paul L, Vincent O (2007) Ind Eng Chem Res 46:6899–6903Google Scholar
  64. 64.
    Addiego WP, Liu W, Boger T (2001) Catal Today 69:25–31Google Scholar
  65. 65.
    Mitchell JE Jr (1946) Trans Am Inst Chem Eng 42:293–308Google Scholar
  66. 66.
    Venkata Rao M, Peddinti N, Challa P, Vasikarappa K, Ajmeera N, Burri David R, Rama Rao KS (2018) Arab J Chem.  https://doi.org/10.1016/j.arabjc.2018.07.018 Google Scholar
  67. 67.
    Christian N, Valeriya Z, Ignacio MC, Hero JH, Freek K, Michiel M (2013) Catal Sci Technol 3:519–526Google Scholar
  68. 68.
    Chiou JYZ, Yang SY, Lai CL, Kung HY, Tang CW, Wang CB (2013) Mod Res Catal 2:13–21Google Scholar
  69. 69.
    Brabant C, Khodakov A, Constant AG (2017) C R Chim 20:40–46Google Scholar
  70. 70.
    Jongsomjit B, Panpranot J, Goodwin JG (2001) J Catal 204:98–109Google Scholar
  71. 71.
    Zhang NW, Huang CJ, Zhu XQ, Xu JD, Weng WZ, Wan HL (2012) Chemistry 7:1895–1901Google Scholar
  72. 72.
    Caia Z, Lia J, Liewb K, Hua J (2010) J Mol Catal A: Chem 330:10–17Google Scholar
  73. 73.
    Song H, Zhang L, Ozkan US (2007) Green Chem 9:686–694Google Scholar
  74. 74.
    Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2004) J Power Sources 134:27–32Google Scholar
  75. 75.
    Taghavimoghaddam J, Knowles GP, Chaffee AL (2012) J Mol Catal A: Chem 358:79–88Google Scholar
  76. 76.
    Guo J, Lou H, Zhao H, Wang X, Zheng X (2004) Mater Lett 58:1920–1923Google Scholar
  77. 77.
    Chandradass J, Ki Hyeon K (2010) J Ceram Process Res 11:96–99Google Scholar
  78. 78.
    Mostafa YN, Ibrahim SA, Ihab S (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 131:329–334Google Scholar
  79. 79.
    Chang JS, Vislovskiy VP, Park MS, Hong DY, Yoo JS, Park SE (2003) Green Chem 5:587–590Google Scholar
  80. 80.
    David Raju B, Choi KM, Han SC, Abhishek B, Park SE (2007) J Mol Catal A: Chem 269:58–63Google Scholar
  81. 81.
    Hong DY, Vislovsky VP, Park SE, Park MS, Yoo JS, Chang JS (2005) Bull Korean Chem Soc 26:1743–1748Google Scholar
  82. 82.
    Reddy BM, Lee SC, Han DS, Park SE (2009) Appl Catal B Environ 87:230–238Google Scholar
  83. 83.
    David Raju B, Choi KM, Lee JH, Han DS, Park SE (2007) Catal Commun 8:43–48Google Scholar
  84. 84.
    Mohan V, Pramod CV, Suresh M (2012) Hari Prasad Reddy K, David Raju B, Rama Rao KS. Catal Commun 18:89–92Google Scholar
  85. 85.
    Navaei Alvar E, Rezaei M, Navaei Alvar H, Feyzallahzadeh H (2009) Yan ZF 196. Chem Eng Commun 196:1417–1424Google Scholar
  86. 86.
    Xingnan Y, Ning M, Weiming H, Yinghong Y, Changxi M, Zaiku X, Zi G (2004) J Mol Catal A: Chem 217:103–108Google Scholar
  87. 87.
    Balkrishna BT, Rabindran JB, Alam K, Luqman AA, Hidenori Y, Tetsuya S, Katsuomi T, Sulaiman SA (2011) Appl Catal A Gen 407:118–126Google Scholar
  88. 88.
    Ye X, Hua W, Yue Y, Dai W, Miao C, Xie Z, Gao Z (2004) N J Chem 28:373–378Google Scholar
  89. 89.
    Sun A, Qin Z, Chen S, Wang J (2004) J Mol Catal A: Chem 210:189–195Google Scholar
  90. 90.
    Mathew T, Malwadkar S, Pai S, Sharanappa N, Peter Sebastian C, Satyanarayana CVV, Bokade VV (2003) Catal Lett 91:217–224Google Scholar
  91. 91.
    Geisler S, Vauthey I, Farusseng D, Zanthoff H, Muhler M (2003) Catal Today 81:413–424Google Scholar
  92. 92.
    Carja G, Nakamura R, Aida T, Niiyama H (2003) J Catal 218:104–110Google Scholar
  93. 93.
    Sun A, Qin Z, Wang J (2002) Appl Catal A Gen 234:179–189Google Scholar
  94. 94.
    Arishtirova K, Kovacheva P, Predoeva A (2003) Appl Catal A Gen 243:191–196Google Scholar
  95. 95.
    Saito M, Kimura H, Mimura N, Wu J, Murata K (2003) Appl Catal A Gen 239:71–77Google Scholar
  96. 96.
    Huerta L, Meyer A, Choren E (2003) Microporous Mesoporous Mater 57:219–227Google Scholar
  97. 97.
    Bispo JRC, Oliveira AC, Correa MLS, Fierro JLG, Marchetti SG, Rangel MC (2002) Studies in surface science and catalysis, vol 142. Elsevier, Amsterdam, pp 517–524Google Scholar
  98. 98.
    Keller N, Maksimova NI, Roddatis VV, Schur M, Mestl G, Butenko YV, Kuznetsov VL, Schlogl R (2002) Angew Chem Int Ed 41:1885–1888Google Scholar
  99. 99.
    Assabumrungrat S, Suksomboon K, Praserthdam P, Tagawa T, Goto S (2002) J Chem Eng Jpn 35:263–273Google Scholar
  100. 100.
    Miyakoshi A, Ueno A, Ichikawa M (2001) Appl Catal A Gen 219:249–258Google Scholar
  101. 101.
    Surman J, Majda D, Rafalska LA, Kustrowski P, Chmielarz L, Dziembaj R (2001) J Therm Anal Calorim 65:445–450Google Scholar
  102. 102.
    Kong C, Lu J, Yang J, Wang J (2007) J Membr Sci 306:29–35Google Scholar
  103. 103.
    Delgado JJ, Chen XW, Su DS, Hamid Sharifah BA, Schloegl R (2007) J Nanosci Nanotechnol 7:3495–3501Google Scholar
  104. 104.
    Su D, Maksimova NI, Mestl G, Kuznetsov VL, Keller V, Schloegl R, Keller N (2007) Carbon 45:2145–2151Google Scholar
  105. 105.
    Wang L, Zhang J, Su Dang S, Ji Y, Cao X, Xiao FS (2007) Chem Mater 19:2894–2897Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Venkata Rao Madduluri
    • 1
  • Kamaraju Seetha Rama Rao
    • 1
    Email author
  1. 1.Catalysis & Fine Chemicals DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations