Advertisement

Controlled Synthesis of Mesoporous CeO2-WO3/TiO2 Microspheres Catalysts for the Selective Catalytic Reduction of NOx with NH3

  • Jie Guo
  • Guodong Zhang
  • Zhicheng TangEmail author
  • Jiyi ZhangEmail author
Article
  • 4 Downloads

Abstract

A series of mesoporous TiO2 supports were synthesized by changing the hydrothermal temperature. Subsequently, CeO2-WO3/TiO2 catalysts were prepared by impregnation method and applied for selective catalytic reduction (SCR) of NOx with NH3. In addition, the morphology of TiO2 changed from microspheres to ellipsoidal microspheres by gradually increasing the hydrothermal temperature which was 120 °C, 160 °C and 200 °C. Obviously, the SCR activity was exhibited in the following order: CeO2-WO3/TiO2-160 > CeO2-WO3/TiO2-120 > CeO2-WO3/TiO2-200. Among, the CeO2-WO3/TiO2-160 catalyst exhibited better catalytic activity for the NH3-SCR reaction. Through a series of characterizations, it was concluded that the mesoporous structure, redox ability and abundant surface acidity of the CeO2-WO3/TiO2 catalyst played a critical role in improving the activity, resistant of H2O and SO2.

Keywords

Hydrothermal method Selective catalytic reduction Micro-spheres CeO2-WO3/TiO2 Morphology Mesoporous material 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51808529, 21707145), Key Science and Technology Program of Lanzhou City (2017-4-111, 2018-RC-65), Province Natural Science Foundation of GanSu (18JR3RA383, 17JR5RA317) and West Light Foundation of The Chinese Academy of Sciences.

References

  1. 1.
    Zhang D, Zhang L, Shi L, Fang C, Li H, Gao R, Huang L, Zhang J (2013) Nanoscale 5:1127–1136CrossRefGoogle Scholar
  2. 2.
    Yang Q, Wang Y, Zhao C, Liu Z, Gustafson W Jr, Shao M (2011) Environ Sci Technol 45:6404–6410CrossRefGoogle Scholar
  3. 3.
    Meng D, Zhan W, Guo Y, Guo Y, Wang L, Lu G (2015) ACS Catal 5:5973–5983CrossRefGoogle Scholar
  4. 4.
    Liu J, Li X, Zhao Q, Hao C, Wang S, Tadé M (2014) ACS Catal 4:2426–2436CrossRefGoogle Scholar
  5. 5.
    Shan W, Geng Y, Chen X, Huang N, Liu F, Yang S (2016) Catal Sci Technol 6:1195–1200CrossRefGoogle Scholar
  6. 6.
    Li X, Li J, Peng Y, Zhang T, Liu S, Hao J (2015) Catal Sci Technol 5:4556–4564CrossRefGoogle Scholar
  7. 7.
    Li X, Li J, Peng Y, Li X, Li K, Hao J (2016) J Phys Chem C 120:18005–18014CrossRefGoogle Scholar
  8. 8.
    Huang X, Zhang G, Lu G, Tang Z (2017) Catal Surv Asia 22:1–19CrossRefGoogle Scholar
  9. 9.
    Chen L, Weng D, Si Z, Wu X (2012) Prog Nat Sci 22:265–272CrossRefGoogle Scholar
  10. 10.
    Wang X, Li X, Zhao Q, Sun W, Tade M, Liu S (2016) Chem Eng J 288:216–222CrossRefGoogle Scholar
  11. 11.
    Li X, Guo Q, Qiu S, Yu G (2016) Asia Pac J Chem Eng 11:246–257CrossRefGoogle Scholar
  12. 12.
    Ding S, Liu F, Shi X, He H (2016) Appl Catal B Environ 180:766–774CrossRefGoogle Scholar
  13. 13.
    Zhang G, Han W, Zhao H, Zong L, Tang Z (2018) Appl Catal B Environ 226:117–126CrossRefGoogle Scholar
  14. 14.
    Gao M, Zhu L, Ong WL, Wang J, Ho GW (2015) Catal Sci Technol 5:4703–4726CrossRefGoogle Scholar
  15. 15.
    Wang M, Ioccozia J, Sun L, Lin C, Lin Z (2014) Energy Environ Sci 7:2182–2202CrossRefGoogle Scholar
  16. 16.
    Xu N, Hu L, Zhang Q, Xiao X, Yang H, Yu E (2015) ACS Appl Mater Int 7:27373–27381CrossRefGoogle Scholar
  17. 17.
    Wu G, Wang J, Thomas DF, Chen A (2008) Langmuir 24:3503–3509CrossRefGoogle Scholar
  18. 18.
    Li G, Liao C, Jiang G (2018) J Environ Sci (China) 72:153–165CrossRefGoogle Scholar
  19. 19.
    Ouyang W, Liu S, Yao K, Zhao L, Cao L, Jiang S, Hou H (2018) Compos Commun 9:76–80CrossRefGoogle Scholar
  20. 20.
    Sarvari N, Mohammadi MR (2018) J Taiwan Inst Chem E 86:81–91CrossRefGoogle Scholar
  21. 21.
    Zhao X, Du Y, Zhang C, Tian L, Li X, Deng K, Chen L, Duan Y, Lv K (2018) Chin J Catal 39:736–746CrossRefGoogle Scholar
  22. 22.
    Park GC, Seo TY, Park CH, Lim JH, Joo J (2017) Ind Eng Chem Res 56:8235–8240CrossRefGoogle Scholar
  23. 23.
    Wang H, Cai K, Liu J, Zhang X, Li Y, Cheng K, Liu J, Li C, Ding F, Song Y (2016) RSC Adv 6:84294–84308CrossRefGoogle Scholar
  24. 24.
    Tong T, Shereef A, Wu J, Binh CT, Kelly JJ, Gaillard JF, Gray KA (2013) Environ Sci Technol 47:12486–12495CrossRefGoogle Scholar
  25. 25.
    Jafari S, Mohammadi MR, Hosseini HR (2016) Ind Eng Chem Res 55:12205–12212CrossRefGoogle Scholar
  26. 26.
    Ding S, Lin T, Wang Y, Lü X, Huang F (2013) New J Chem 37:784CrossRefGoogle Scholar
  27. 27.
    Zong L, Zhang G, Zhao J, Dong F, Zhang J, Tang Z (2018) Chem Eng J 343:500–511CrossRefGoogle Scholar
  28. 28.
    Zong L, Zhang J, Lu G, Tang Z (2018) Catal Surv Asia 22:105–117CrossRefGoogle Scholar
  29. 29.
    Huang H, Shan W, Yang S, Zhang J (2014) Catal Sci Technol 4:3611–3614CrossRefGoogle Scholar
  30. 30.
    Gao S, Wang P, Yu F, Wang H, Wu Z (2016) Catal Sci Technol 6:8148–8156CrossRefGoogle Scholar
  31. 31.
    Jiang Y, Xing Z, Wang X, Huang S, Wang X, Liu Q (2015) Fuel 151:124–129CrossRefGoogle Scholar
  32. 32.
    Zhang Q, Liu X, Ning P, Song Z, Li H, Gu J (2015) Catal Sci Technol 5:2260–2269CrossRefGoogle Scholar
  33. 33.
    Gao X, Jiang Y, Fu Y, Zhong Y, Luo Z, Cen K (2010) Catal Commun 11:465–469CrossRefGoogle Scholar
  34. 34.
    Xu W, He H, Yu Y (2009) J Phys Chem C 113:4426–4432CrossRefGoogle Scholar
  35. 35.
    Shan W, Liu F, He H, Shi X, Zhang C (2012) Appl Catal B Environ 115–116:100–106CrossRefGoogle Scholar
  36. 36.
    Geng Y, Huang H, Chen X, Ding H, Yang S, Liu F, Shan W (2016) RSC Adv 6:64803–64810CrossRefGoogle Scholar
  37. 37.
    Geng Y, Shan W, Xiong S, Liao Y, Yang S, Liu F (2016) Catal Sci Technol 6:3149–3155CrossRefGoogle Scholar
  38. 38.
    Geng Y, Chen X, Yang S, Liu F, Shan W, Appl ACS (2017) Mater Interfaces 9:16951–16958CrossRefGoogle Scholar
  39. 39.
    Nam IS, Eldridge JW, Kittrell JR (1986) Ind Eng Chem Res 25:192–197CrossRefGoogle Scholar
  40. 40.
    Dong G, Bai Y, Zhang Y, Zhao Y (2015) New J Chem 39:3588–3596CrossRefGoogle Scholar
  41. 41.
    Shan W, Liu F, He H, Shi X, Zhang C (2011) Chem Commun 47:8046–8048CrossRefGoogle Scholar
  42. 42.
    Shan W, Liu F, Yu Y, He H (2014) Chin J Catal 35:1251–1259CrossRefGoogle Scholar
  43. 43.
    Chen J, Tan Y, Li C, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou X (2010) J Am Chem Soc 132:6124–6130CrossRefGoogle Scholar
  44. 44.
    Ma Z, Weng D, Wu X, Si Z (2012) J Environ Sci 24:1305–1316CrossRefGoogle Scholar
  45. 45.
    Bigey C, Hilaire L, Maire G (2001) J Catal 198:208–222CrossRefGoogle Scholar
  46. 46.
    Zhou K, Wang X, Sun X, Peng Q, Li Y (2005) J Catal 229:206–212CrossRefGoogle Scholar
  47. 47.
    Liu G, Yang H, Wang X, Cheng L, Pan J, Lu G, Cheng H (2009) J Am Chem Soc 131:12868–12869CrossRefGoogle Scholar
  48. 48.
    Zong L, Zhang G, Zhao H, Zhang J, Tang Z (2018) Chem Eng J 354:295–303CrossRefGoogle Scholar
  49. 49.
    Peng Y, Li J, Chen L, Chen J, Han J, Zhang H, Han W (2012) Environ Sci Technol 46:2864–2869CrossRefGoogle Scholar
  50. 50.
    Engweiler J, Harf J, Baiker A (1996) J Catal 159:259–269CrossRefGoogle Scholar
  51. 51.
    Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Phys Chem Chem Phys 2:1319–1324CrossRefGoogle Scholar
  52. 52.
    Zhang G, Han W, Dong F, Zong L, Lu G, Tang Z (2016) RSC Adv 6:76556–76567CrossRefGoogle Scholar
  53. 53.
    Zhou D, Ren Z, Li B, Ma Z, Zhang X, Yang H (2015) RSC Adv 5:31708–31715CrossRefGoogle Scholar
  54. 54.
    Michalow-Mauke KA, Lu Y, Kowalski K, Graule T, Nachtegaal M, Kröcher O, Ferri D (2015) ACS Catal 5:5657–5672CrossRefGoogle Scholar
  55. 55.
    He Y, Ford ME, Zhu M, Liu Q, Wu Z, Wachs IE (2016) Appl Catal B Environ 188:123–133CrossRefGoogle Scholar
  56. 56.
    Wijayanti K, Leistner K, Chand S, Kumar A, Kamasamudram K, Currier NW, Yezerets A, Olsson L (2016) Catal Sci Technol 6:2565–2579CrossRefGoogle Scholar
  57. 57.
    Mamede AS, Payen E, Grange P, Poncelet G, Ion A, Alifanti M, Pârvulescu VI (2004) J Catal 223:1–12CrossRefGoogle Scholar
  58. 58.
    Centeno MA, Carrizosa I, Odriozola JA (2001) Appl Catal B Environ 29:307–314CrossRefGoogle Scholar
  59. 59.
    Huang X, Zhang G, Dong F, Tang Z (2018) J Ind Eng Chem 69:66–76Google Scholar
  60. 60.
    Zhang G, Yan Z (2018) Commun Nonlinear Sci 62:117–133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.School of Petroleum and ChemicalLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations