Catalysis Surveys from Asia

, Volume 23, Issue 1, pp 41–51 | Cite as

The Effect of K Salts on SO2–SO3 Conversion and Denitration Behavior over V2O5–WO3/TiO2 Catalysts

  • Haiping Xiao
  • Chaozong DouEmail author
  • Yu Ru
  • Cong Qi
  • Li Cai


A series of V2O5–WO3/TiO2 catalysts treated by KCl or K2SO4 were prepared using the equal volume impregnation method. The effects of adding these K salts on SO2–SO3 conversion and on denitration behavior over the catalyst were studied, using reactor trials and various characterization methods, including NH3-TPD, H2-TPR, ICP, BET, XRD, SEM, FT-IR and XPS. The results of catalytic activity evaluation tests show that adding K salts decreases the denitration efficiency, while SO2 enhances the activity of the KCl-poisoned catalyst to an extent. The presence of K salts also improves the SO3 formation rate, such that the SO3 formation rate for the K2SO4-poisoned catalyst is as high as 1.53% at 410 °C (compared with 0.60% for the fresh catalyst). The characterization data indicate that K salts aggregate on the catalyst surface, blocking the pores of the catalyst. The reduction ability of the catalyst is decreased slightly and new weakly acidic sites appear. In addition, the concentration of strongly acidic sites declines. SO2 can increase the surface acidity of the catalyst. K salts increase the number of V5+=O bonds and weakly acidic sites, but consume oxygen atoms along with V and W species. Importantly, the strength of the V5+=O bonds, the concentration of surface chemically adsorbed oxygen and the V4+/V5+ ratio all played vital roles in improving the conversion of SO2–SO3 and in enhancing the NO reduction.

Graphical Abstract


K poisoning SO3 SO42− V2O5–WO3/TiO2 catalysts Denitration 



This work was supported by the National Natural Science Foundation of China (Grant No.51206047).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Aguilar-Romero M, Camposeco R, Castillo S, Marín J, Rodríguez-González V, García-Serrano LA, Mejía-Centeno I (2017) Fuel 198:123CrossRefGoogle Scholar
  2. 2.
    Zhang S, Zhong Q (2015) J Solid State Chem 221:49CrossRefGoogle Scholar
  3. 3.
    Kompio PGWA, Brückner A, Hipler F, Manoylova O, Auer G, Mestl G, Grünert W (2017) Appl Catal B 217:365CrossRefGoogle Scholar
  4. 4.
    Liu C, Shi J-W, Gao C, Niu C (2016) Appl Catal A 522:54CrossRefGoogle Scholar
  5. 5.
    Kong M, Liu Q, Zhou J, Jiang L, Tian Y, Yang J, Ren S, Li J (2018) Chem Eng J 348:637CrossRefGoogle Scholar
  6. 6.
    Cimino S, Totarella G, Tortorelli M, Lisi L (2017) Chem Eng J 330:92CrossRefGoogle Scholar
  7. 7.
    Castellino F, Jensen AD, Johnsson JE, Fehrmann R (2009) Appl Catal B 86:196CrossRefGoogle Scholar
  8. 8.
    Zheng Y, Jensen AD, Johnsson JE, Thøgersen JR (2008) Appl Catal B 83:186CrossRefGoogle Scholar
  9. 9.
    Chen L, Li J, Ge M (2011) Chem Eng J 170:531CrossRefGoogle Scholar
  10. 10.
    Lewandowska AE, Calatayud M, Lozano-Diz E, Minot C, Bañares MA (2008) Catal Today 139:209CrossRefGoogle Scholar
  11. 11.
    Liu YM, Shu H, Xu QS, Zhang YH, Yang LJ (2015) J Fuel Chem Tech 43:1018CrossRefGoogle Scholar
  12. 12.
    Chang H, Shi C, Li M, Zhang T, Wang C, Jiang L, Wang X (2018) Chin J Catal 39:710CrossRefGoogle Scholar
  13. 13.
    Ramis G, Yi L, Busca G (1996) Catal Today 28:373CrossRefGoogle Scholar
  14. 14.
    Due-Hansen J, Kustov AL, Christensen CH, Fehrmann R (2009) Catal Commun 10:803CrossRefGoogle Scholar
  15. 15.
    Kröcher O, Elsener M (2008) Appl Catal B 77:215CrossRefGoogle Scholar
  16. 16.
    Castellino F, Rasmussen SB, Jensen AD, Johnsson JE, Fehrmann R (2008) Appl Catal B 83:110CrossRefGoogle Scholar
  17. 17.
    Dunn JP, Stenger HG, Wachs IE (1999) Catal Today 53:543CrossRefGoogle Scholar
  18. 18.
    Dunn JP, Stenger HG, Wachs IE (1999) J Catal 181:233CrossRefGoogle Scholar
  19. 19.
    Zhang G, Han W, Zhao H, Zong L, Tang Z (2018) Appl Catal B 226:117CrossRefGoogle Scholar
  20. 20.
    Zong L, Zhang G, Zhao J, Dong F, Zhang J, Tang Z (2018) Chem Eng J 343:500CrossRefGoogle Scholar
  21. 21.
    Huang X, Zhang G, Lu G, Tang Z (2018) Catal Surv Asia 22:1CrossRefGoogle Scholar
  22. 22.
    Peng Y, Li J, Shi W, Xu J, Hao J (2012) Environ Sci Technol 46:12623CrossRefGoogle Scholar
  23. 23.
    Yan Z, Shi X, Yu Y, He H (2018) J Environ Sci 73:155CrossRefGoogle Scholar
  24. 24.
    Kamata H, Yukimura A (2012) Fuel Process Tech 104:295CrossRefGoogle Scholar
  25. 25.
    Wu Z, Jin R, Wang H, Liu Y (2009) Catal Commun 10:935CrossRefGoogle Scholar
  26. 26.
    Yan DJ, Yu Y, Huang XM, Liu SJ, Liu YH (2016) J Fuel Chem Technol 44:232CrossRefGoogle Scholar
  27. 27.
    Zhang M, Huang B, Jiang H, Chen Y (2017) Chin J Chem Eng 25:1695CrossRefGoogle Scholar
  28. 28.
    Hou SS, Chen KM, Yang ZY, Lin TH (2015) Mater 08:4805CrossRefGoogle Scholar
  29. 29.
    Topsoe NY, Dumesic JA, Topsoe H (1995) J Catal 151:241CrossRefGoogle Scholar
  30. 30.
    Nicosia D, Elsener M, Kröcher O, Jansohn P (2007) Top Catal 42/43:333CrossRefGoogle Scholar
  31. 31.
    Homann T, Bredow T, Jug K (2002) Surf Sci 515:205CrossRefGoogle Scholar
  32. 32.
    Zhang L, Cui S, Guo H, Ma X, Luo X (2015) Appl Surf Sci 355:1116CrossRefGoogle Scholar
  33. 33.
    Reiche MA, Maciejewski M, Baiker A (2000) Catal Today 56:347CrossRefGoogle Scholar
  34. 34.
    Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A (2002) Appl Catal B 39:181CrossRefGoogle Scholar
  35. 35.
    Hou Y, Huang Z, Guo S (2009) Catal Commun 10:1538CrossRefGoogle Scholar
  36. 36.
    Jing L, Xu Z, Sun X, Shang J, Cai W (2001) Appl Surf Sci 180:308CrossRefGoogle Scholar
  37. 37.
    Zhao K, Han W, Tang Z, Lu J, Hu X (2018) Catal Surv Asia 22:20CrossRefGoogle Scholar
  38. 38.
    Zong L, Dong F, Zhang G, Han W, Tang Z, Zhang J (2017) Catal Surv Asia 21:103CrossRefGoogle Scholar
  39. 39.
    Zhang X, Huang Z, Liu Z (2008) Catal Commun 9:842CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Energy, Power and Mechanical EngineeringNorth China Electric Power UniversityBeijingChina
  2. 2.Sichuan Electric Power Consulting Design Co., LtdChengduChina

Personalised recommendations