Advertisement

CuO/CeO2–MnO2 Catalyst Prepared by Redox Method for Preferential Oxidation of CO in H2-Rich Gases

  • Lei Gong
  • Changxiang Liu
  • Qian Liu
  • Runying Dai
  • Xuliang Nie
  • Limin Lu
  • Guangbin Liu
  • Xiuxia HuEmail author
Article
  • 12 Downloads

Abstract

CuO/CeO2–MnO2 (CuCeMn-4) catalyst was prepared by redox method and was tested in the CO preferential oxidation in H2-rich gases (CO PROX). CuO/CeO2–Mn2O3 (CuCeMn-3) catalyst was prepared and tested for comparison. CuCeMn-4 exhibits higher catalytic activity than CuCeMn-3. The complete CO conversion with CO2 selectivity of 92% can be obtained at 120 °C over CuCeMn-4. The catalysts were characterized by means of N2 adsorption/desorption, XRD, H2-TPR and XPS techniques. The results show that the interaction between MnO2 and CeO2 in catalyst is stronger than Mn2O3 and CeO2, which can promote the mobility of oxygen species from CeO2–MnO2 to active copper species. XPS characterization further revealed that CuCeMn-4 contains richer lattice oxygen, higher amount of Cu+ species and less carbonate species on the surface as compared with CuCeMn-3. All these should be greatly responsible for the high activity of CuCeMn-4 catalyst.

Keywords

CuO/CeO2–MnO2 catalyst Redox method CO preferential oxidation 

Notes

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (21563014, 21403093), Foundation of Jiangxi Education Committee (GJJ160411) and Natural Science Foundation of Jiangxi Province (20142BAB203014).

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Song C (2002) Catal Today 77(1–2):17–49CrossRefGoogle Scholar
  2. 2.
    Park ED, Lee D, Lee HC (2009) Catal Today 139(4):280–290CrossRefGoogle Scholar
  3. 3.
    Liu K, Wang AQ, Zhang T (2012) ACS Catal 2:1165–1178CrossRefGoogle Scholar
  4. 4.
    Konsolakis M (2016) Appl Catal B 198:49–66CrossRefGoogle Scholar
  5. 5.
    Martínez-Arias A, Gamarra D, Hungría A, Fernádez-García M, Munuera G, Hornés A, Bera P, Conesa J, Cámara A (2013) Catalysts 3(2):378–400CrossRefGoogle Scholar
  6. 6.
    Jampa S, Wangkawee K, Tantisriyanurak S, Changpradit J, Jamieson AM, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S (2017) Int J Hydrogen Energy 42:5537–5548CrossRefGoogle Scholar
  7. 7.
    Gamarra D, Martínez-Arias A (2009) J Catal 263:189–195CrossRefGoogle Scholar
  8. 8.
    Gamarra D, Belver C, Fernández-García M, Martínez-Arias A (2010) J Phys Chem C 114:18576–18582CrossRefGoogle Scholar
  9. 9.
    Hou H, Liu Y, Liu B, Jing P, Gao Y, Zhang L, Niu P, Wang Q, Zhang J (2015) Int J Hydrogen Energy 40:878–890CrossRefGoogle Scholar
  10. 10.
    Zeng S, Liu K, Zhang L, Qin B, Chen T, Yin Y, Su H (2014) J Power Sources 261:46–54CrossRefGoogle Scholar
  11. 11.
    Peng CT, Lia HK, Liaw BJ, Chen YZ (2011) Chem Eng J 172:452–458CrossRefGoogle Scholar
  12. 12.
    Guo X, Li J, Zhou R (2016) Fuel 63:56–64CrossRefGoogle Scholar
  13. 13.
    Li J, Zhu PF, Zuo SF, Huang QQ, Zhou RX (2010) Appl Catal A 381:261–266CrossRefGoogle Scholar
  14. 14.
    Gong L, Huang Z, Luo LT, Zhang N (2014) React Kinet Mech Cat 111(1):489–504CrossRefGoogle Scholar
  15. 15.
    Chen S, Song W, Lin H, Wang S, Biswas S, Mollahosseini M, Kou C, Gao P, Suib LS (2016) Appl Mater Interface 8:7834–7842CrossRefGoogle Scholar
  16. 16.
    Kaptejin F, Singoredjo L, Andreini A (1994) Appl Catal B 3(2–3):173–189CrossRefGoogle Scholar
  17. 17.
    Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang JG, Shen WJ (2006) Appl Catal B 62:265–273CrossRefGoogle Scholar
  18. 18.
    Jin H, You R, Zhou S, Ma K, Meng M, Zheng L, Zhang J, Hu T (2015) Int J Hydrogen Energ 40:3919–3913 yCrossRefGoogle Scholar
  19. 19.
    Li J, Zhu PF, Zhou RX (2011) J Power Source 196:9590–9598CrossRefGoogle Scholar
  20. 20.
    Njagi EC, Genuino HC, King’ondu CK, Chen CH, Horvath D, Suib LS (2011) Int J Hydrogen Energy 36:6768–6779CrossRefGoogle Scholar
  21. 21.
    Liu ZG, Zhou RX, Zheng XM (2008) Int J Hydrogen Energy 33:791–796CrossRefGoogle Scholar
  22. 22.
    Ramesh K, Chen LW, Chen FX, Liu Y, Wang Z, Han YH (2008) Catal Today 131:477–482CrossRefGoogle Scholar
  23. 23.
    Liu ZG, Zhou RX, Zheng XM (2007) J Mol Cata A 267:137–142CrossRefGoogle Scholar
  24. 24.
    Meng M, Liu YQ, Sun ZS, Zhang LJ, Wang XT (2012) Int J Hydrogen Energy 37:14133–14142CrossRefGoogle Scholar
  25. 25.
    Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ (2007) J Catal 246:52–59CrossRefGoogle Scholar
  26. 26.
    Reddy AS, Gopinath CS, Chilukuri S (2006) J Catal 243:278–291CrossRefGoogle Scholar
  27. 27.
    Qi L, Yu Q, Dai Y, Tang CG, Liu LJ, Zhang HL, Gao F, Dong L, Chen Y (2012) Appl Catal B 119–120:308–320CrossRefGoogle Scholar
  28. 28.
    Zhu CL, Ding T, Gao WX, Ma K, Tian Y, Li XG (2017) Int J Hydrogen Energy 42:17457–17465CrossRefGoogle Scholar
  29. 29.
    Gong X, Liu BC, Kang B, Xu GR, Wang Q, Jia CJ, Zhang J (2017) Mol Catal 436:90–97CrossRefGoogle Scholar
  30. 30.
    Wang J, Pu HP, Wan GP, Chen KZ, Lu JC, Lei YQ, Zhong LP, He SF, Han CY, Luo YM (2017) Int J Hydrogen Energy 42:21955–21968CrossRefGoogle Scholar
  31. 31.
    Platzman I, Brener R, Haick H, Tannenbaum R (2008) J Phys Chem C 112(4):1101–1108CrossRefGoogle Scholar
  32. 32.
    Tang W, Wu X, Li D, Wang Z, Liu G, Liu H, Chen Y (2014) J Mater Chem A 2:2544–2554CrossRefGoogle Scholar
  33. 33.
    Georgiev DG, Baird RJ, Newaz G, Auner G, Witte R, Herfurth H (2004) Appl Surf Sci 236:71–76CrossRefGoogle Scholar
  34. 34.
    Darmstadt H, Roy C, Kaliaguine S (1994) Carbon 32:1399–1406CrossRefGoogle Scholar
  35. 35.
    Chu LQ, Zou XN, Knoll W, Forch R (2008) Surf Coat Technol 202:2047–2051CrossRefGoogle Scholar
  36. 36.
    Casaletto MP, Lisi L, Mattogno G, Patrono P, Ruoppolo G (2004) Appl Catal A: Gen 267:157–164CrossRefGoogle Scholar
  37. 37.
    Wang W, Zhang J, Huang H, Wu Z, Zhang Z (2007) Appl Surf Sci 253:5393–5399CrossRefGoogle Scholar
  38. 38.
    Bera P, Hornés A, Cámara AL, Martínez-Arias A (2010) Catal Today 155:184–191CrossRefGoogle Scholar
  39. 39.
    Marbán G, López I, Valdés-Solós T (2009) Appl Catal A: Gen 361:160–169CrossRefGoogle Scholar
  40. 40.
    Davó-Quiňonero A, Navlani-García M, Lozano-Castelló D, Bueno-López A, Anderson JA (2016) ACS Catal 6:1723–1731CrossRefGoogle Scholar
  41. 41.
    Gamarra D, Belver C, Fernández-García M, Martínez-Arias A (2007) J Am Chem Soc 129:12064–12065CrossRefGoogle Scholar
  42. 42.
    Sedmak G, Hočevar S, Levec J (2003) J Catal 213(2):135–150CrossRefGoogle Scholar
  43. 43.
    Polster CS, Nair H, Baertsch CD (2009) J Catal 266:308–319CrossRefGoogle Scholar
  44. 44.
    Wang F, Büchel R, Savitsky A, Zalibera M, Widmann D, Pratsinis SE, Lubitz W, Süchth F (2016) ACS Catal 6(6):3520–3530CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lei Gong
    • 1
  • Changxiang Liu
    • 1
  • Qian Liu
    • 1
  • Runying Dai
    • 1
  • Xuliang Nie
    • 1
  • Limin Lu
    • 1
  • Guangbin Liu
    • 1
  • Xiuxia Hu
    • 1
    Email author
  1. 1.Department of ChemistryJiangxi Agricultural UniversityNanchangChina

Personalised recommendations