Catalysis Surveys from Asia

, Volume 23, Issue 1, pp 33–40 | Cite as

Efficient Formaldehyde Elimination Over Ag/MnO2 Nanorods: Influence of the Ag Loading

  • Fenglin Huang
  • Xue Wang
  • Qinyu Zhu
  • Kelun Li
  • Xuefeng Zhou
  • Suhong LuEmail author
  • Zheng Fan
  • Lulu He
  • Yanxiong Liu
  • Fanjue Pang


A series of Ag/MnO2 nanorods with various loading amounts of Ag were fabricated and used for formaldehyde (HCHO) elimination. The obtained catalysts were characterized by means of N2 adsorption–desorption, SEM, TEM, XRD, H2-TPR, O2-TPD and XPS. As the optimal loading amount of Ag was 0.1%, the Ag/MnO2-r exhibited a superior catalytic performance for HCHO oxidation, on which the 100% conversion of HCHO was achieved at 80 °C. It has observed that the remarkable catalytic activity of 0.1% Ag/MnO2-r was mainly due to the better low-temperature reducibility and more abundant surface active oxygen species resulting from the strong metal-support interaction between Ag and MnO2.


Formaldehyde Catalytic oxidation Ag Nanorod MnO2 



This work was sponsored financially by the College Students’ Innovative Entrepreneurial Training Program of Xi’an Shiyou University and Shaan xi Province (Nos. YCS17221013 and 2017107051486), the Science & Technology Plan Project of Xi’an City (No. 2017081CG/RC044 (XASY006)), Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 17JK0608), Young Talent fund of University Association for Science and Technology in Shaanxi (20180604) and the National Nature Science Foundation of China (No. 21606177).


  1. 1.
    Bai B Y, Qiao Q, Li JH, Hao JM (2016) Progress in research on catalysts for catalytic oxidation of formaldehyde. Chin J Catal 37:102–122CrossRefGoogle Scholar
  2. 2.
    Cui WY, Xue D, Yuan XL, Zheng B, Jia MJ, Zhang WX (2017) Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions. Appl Surf Sci 411:105–112CrossRefGoogle Scholar
  3. 3.
    Tang XF, Chen JL, Huang XM, Xu YD, Shen WJ (2008) Pt/MnOx-CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Appl Catal B 81:115–121CrossRefGoogle Scholar
  4. 4.
    Lu SH, Wang F, Chen CC, Huang FL, Li KL (2017) Catalytic oxidation of formaldehyde over CeO2-Co3O4 catalysts. J Rare Earth 35:867–874CrossRefGoogle Scholar
  5. 5.
    Lu SH, Li KL, Huang FL, Chen CC, Sun B (2017) Efficient MnOx-Co3O4-CeO2 catalysts for formaldehyde elimination. Appl Surf Sci 400:277–282CrossRefGoogle Scholar
  6. 6.
    Huang YC, Long B, Tang MN, Rui ZB, Balogun MS, Tong YX, Ji HB (2016) Bifunctional catalytic material: An ultrastable and high-performancesurface defect CeO2 nanosheets for formaldehyde thermal oxidationand photocatalytic oxidation. Appl Catal B 181:779–787CrossRefGoogle Scholar
  7. 7.
    Yan ZX, Xu ZH, Cheng B, Jiang CJ (2017) Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. Appl Surf Sci 404:426–434CrossRefGoogle Scholar
  8. 8.
    Zhang CB, Li YB, Wang YF, He H (2014) Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature. Environ Sci Technol 48:5816–5822CrossRefGoogle Scholar
  9. 9.
    Chen BB, Zhu XB, Wang YD, Yu LM, Lu JQ, Shi C (2017) Nano-sized gold particles dispersed on HZSM-5 and SiO2 substrates for catalytic oxidation of HCHO. Catal Today 281:512–519CrossRefGoogle Scholar
  10. 10.
    Lu SH, Chen CC, Wang X, Wei SH, Zhu QY, Huang FL, Li KL, Zhou XF, He LL, Liu YX, Pang FJ (2018) Efficient catalytic removal of formaldehyde over Ag/Co3O4-CeO2 prepared by different method. Catal Surv Asia 22:63–71CrossRefGoogle Scholar
  11. 11.
    Bai BY, Qiao Q, Li JH, Hao JM (2016) Synthesis of three-dimensional ordered mesoporous MnO2 and its catalytic performance in formaldehyde oxidation. Chin J Catal 37:27–31CrossRefGoogle Scholar
  12. 12.
    Bai BY, Arandiyan H, Li JH (2013) Comparison of the performance for oxidation of formaldehyde onnano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl Catal B 142–143:677–683CrossRefGoogle Scholar
  13. 13.
    Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang JG, Shen WJ (2006) MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl Catal B 62:265–273CrossRefGoogle Scholar
  14. 14.
    Nie LH, Yu JG, Li XY, Cheng B, Liu G, Jaronie M (2013) Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ Sci Technol 47:2777–2783CrossRefGoogle Scholar
  15. 15.
    Ma L, Wang DS, Li JH, Bai BY, Fu LX, Li YD (2014) Ag/CeO2 nanospheres: efficient catalysts for formaldehyde oxidation. Appl Catal B 148–149:36–43Google Scholar
  16. 16.
    Bai BY, Li JH (2014) Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation. ACS Catal 4:2753–2762CrossRefGoogle Scholar
  17. 17.
    Tang XF, Chen JL, Li YG, Li Y, Xu YD, Shen WJ (2006) Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts. Chem Eng J 118:119–125CrossRefGoogle Scholar
  18. 18.
    Zhang JH, Li YB, Zhang Y, Chen M, Wang L, Zhang CB, He H (2015) Effect of suopport on the activity of Ag-based catalysts for formaldehyde oxidation. Sci Rep 5:12950–12960CrossRefGoogle Scholar
  19. 19.
    Torres JQ, Giraudon JM, Lamonier JF (2011) Formaldehyde total oxidation over mesoporous MnOx catalysts. Catal Today 176:277–280CrossRefGoogle Scholar
  20. 20.
    Liang SH, Teng F, Bulgan G, Zong RL, Zhu YF (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112:5307–5315CrossRefGoogle Scholar
  21. 21.
    Zhang JH, Li YB, Wang L, Zhang CB, He H (2015) Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal Sci Technol 5:2305–2313CrossRefGoogle Scholar
  22. 22.
    Zhou L, He JH, Zhang J, He ZC, Hu YC, Zhang CB, He H (2011) Facile in-situ synthesis of manganese dioxide nanosheets on cellulose fibers and their application in oxidative decomposition of formaldehyde. J Phys Chem C 115:16873–16878CrossRefGoogle Scholar
  23. 23.
    Shi FJ, Wang F, Dai HX, Dai JX, Deng JG, Liu YX, Bai GM, Ji KM, Au CT (2012) Rod-, flower-, and dumbbell-like MnO2: highly active catalysts for the combustion of toluene. Appl Catal A 433–434:206–213CrossRefGoogle Scholar
  24. 24.
    Peng HG, Ying JW, Zhang JY, Zhang XH, Peng C, Rao C, Liu WM, Zhang N, Wang X (2017) La-doped Pt/TiO2 as an efficient catalyst for room temperature oxidation of low concentration HCHO. Chin J Catal 38:39–47CrossRefGoogle Scholar
  25. 25.
    Li JM, Qu ZP, Qin Y, Wang H (2016) Effect of MnO2 morphology on the catalytic oxidation of toluene over Ag/MnO2 catalysts. Appl Surf Sci 385:234–240CrossRefGoogle Scholar
  26. 26.
    Li BX, Rong GX, Xie Y, Huang LF, Feng CQ (2006) Low-temperature synthesis of r-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg Chem 45:6404–6410CrossRefGoogle Scholar
  27. 27.
    Gong DD, Li SS, Guo SX, Tang HG, Wang H, Liu Y (2018) Lanthanum and cerium Co-modified Ni/SiO2 catalyst for CO methanation from syngas. Appl Surf Sci 434:351–364CrossRefGoogle Scholar
  28. 28.
    Li SS, Gong DD, Tang HG, Ma Z, Liu ZT, Liu Y (2018) Preparation of bimetallic Ni@Ru nanoparticles supported on SiO2 and their catalytic performance for CO methanation. Chem Eng J 334:2167–2178CrossRefGoogle Scholar
  29. 29.
    Liu BC, Liu Y, Li CY, Hu WT, Jing P, Wang Q, Zhang J (2012) Three-dimensionally ordered macroporous Au/CeO2-Co3O4 catalysts with nanoporous walls for enhanced catalytic oxidation of formaldehyde. Appl Catal B 127:47–58CrossRefGoogle Scholar
  30. 30.
    Chen YN, Liu DS, Yang LJ, Meng M, Zhang J, Zheng LR, Chu SQ, Hu TD (2013) Ternary composite oxide catalysts CuO/Co3O4-CeO2 with wide temperature-window for the preferential oxidation of CO in H2-rich stream. Chem Eng J 234:88–98CrossRefGoogle Scholar
  31. 31.
    Ma CY, Wang DH, Xue WJ, Dou BJ, Wang HL, Hao ZP (2011) Investigation of formaldehyde oxidation over Co3O4-CeO2 and Au/Co3O4–CeO2 catalysts at room temperature: Effective removal and determination of reaction mechanism. Environ Sci Technol 45:3628–3634CrossRefGoogle Scholar
  32. 32.
    Li DD, Yang GL, Li PL, Wang HL, Zhang PY (2016) Promotion of formaldehyde oxidation over Ag catalyst by Fe doped MnOx support at room temperature. Catal Today 277:257–265CrossRefGoogle Scholar
  33. 33.
    Qu ZP, Chen D, Sun YH, Wang Y (2014) High catalytic activity for formaldehyde oxidation of AgCo/APTES@MCM-41 prepared by two steps method. Appl Catal A 487:100–109CrossRefGoogle Scholar
  34. 34.
    Stathatos E, Lianos P, Falaras P, Siokou A (2000) Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films. Langmuir 16:2398–2400CrossRefGoogle Scholar
  35. 35.
    Liu MH, Wu XD, Liu S, Gao YX, Chen Z, Ma Y, Ran R, Weng D (2017) Study of Ag/CeO2 catalysts for naphthalene oxidation: balancing the oxygen availability and oxygen regeneration capacity. Appl Catal B 219:231–240CrossRefGoogle Scholar
  36. 36.
    Wang JL, Li JG, Jiang CJ, Zhou P, Zhang PY, Yu JG (2017) The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Appl Catal B 204:147–155CrossRefGoogle Scholar
  37. 37.
    Watanabe N, Yamashita H, Miyadera H, Tominaga S (1996) Removal of unpleasant odor gases using an Ag-Mn catalyst. Appl Catal B 8:405–415Google Scholar
  38. 38.
    Andreasen A, Lynggaard H, Stegelmann C, Stoltze P (2003) A microkinetic model of the methanol oxidation over silver. Surf Sci 544:5–23CrossRefGoogle Scholar
  39. 39.
    Lu L, Tian H, He JH, Yang QW (2016) Graphene-MnO2 hybrid nanostructure as a new catalyst for formaldehyde oxidation. J Phys chem C 120:23660–23668CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXi’an Shiyou UniversityXi’anChina
  2. 2.Shaanxi Coal and Chemical Technology Institute Co., LtdXi’anChina

Personalised recommendations