1,3-Butadiene Production from Bioethanol and Acetaldehyde over Zirconium Oxide Supported on Series Silica Catalysts

Article
  • 26 Downloads

Abstract

In this paper a series of zirconium oxide supported on silica composite oxides were studied as catalysts for the production of 1,3-butadiene from bioethanol and acetaldehyde. The highest selectivity observed was 91.43%. Different silica materials with varied pore diameters in the range of 3.6–11.6 nm and the service life of the catalyst have been initially investigated. The catalysts were characterized by a nitrogen adsorption analysis, X-ray diffraction, scanning electron micrography and 29Si solid-state NMR spectroscopy. The catalytic results show that the pore sizes are important factors determining the activity when catalyst contains a subtle balance of the acid and base.

Graphical Abstract

Keywords

Bioethanol Acetaldehyde 1,3-Butadiene ZrO2 supported on silica materials Surface properties 

Notes

Acknowledgements

The authors thank the key laboratory for green chemical technology of ministry of education and collaborative innovation center of chemical science and engineering, for technical assistance.

References

  1. 1.
    Bozell JJ, Petersen GR (2010) Green Chem 12:539–554CrossRefGoogle Scholar
  2. 2.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Bioresour Technol 101(13):4851–4861CrossRefGoogle Scholar
  3. 3.
    John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Bioresour Technol 102(1):186–193CrossRefGoogle Scholar
  4. 4.
    Llorca J, de la Piscina PR, Sales J, Homs N (2001) Chem Commun 7:641–642CrossRefGoogle Scholar
  5. 5.
    Makshina EV, Dusselier M, Janssens W, Degrève J, Jacobs PA, Sels BF (2014) Chem Soc Rev 43:7917–7953CrossRefGoogle Scholar
  6. 6.
    White WC (2007) Chem Boil Interact 166:10–14CrossRefGoogle Scholar
  7. 7.
    Dunn JT, Toussaint WJ (1947) US Patent 2,421,361Google Scholar
  8. 8.
    Lebedev SV, Yakubchik AO (1929) J Chem Soc 1929:220–225CrossRefGoogle Scholar
  9. 9.
    Ordomsky VV, Sushkevich VL, Ivanova II (2010) J Mol Catal A 333:85–93CrossRefGoogle Scholar
  10. 10.
    León M, Díaz E, Ordóñez S (2011) Catal Today 164:436–442CrossRefGoogle Scholar
  11. 11.
    Baerdemaeker TD, Feyen M, Müller U, Yilmaz B, Xiao FS, Zhang WP, Yokoi T, Bao XH, Gies H, De Vos DE (2015) ACS Catal 5:3393–3397CrossRefGoogle Scholar
  12. 12.
    Quattlebaum WM, Toussaint WJ, Dunn JTJ (1947) Am Chem Soc 69:593–599CrossRefGoogle Scholar
  13. 13.
    Corson B, Jones H, Welling C, Hinckley J, Stahly E (1950) Ind Eng Chem Res 42:359–373CrossRefGoogle Scholar
  14. 14.
    Jones MD, Keir CG, Iulio CD, Robertson RAM, Williams CV, Apperley DC (2011) Catal Sci Technol 1:267–272CrossRefGoogle Scholar
  15. 15.
    Chae H-J, Kim T-W, Moon Y-K, Kim H-K, Jeong K-E, Kim C-U, Jeong SY (2014) Appl Catal B 150:596–604CrossRefGoogle Scholar
  16. 16.
    Han Z, Li X, Zhang MH, Liu ZZ, Gao MX (2015) RSC Adv 5:103982–103988CrossRefGoogle Scholar
  17. 17.
    Wang XX, Lefebvre F, Patarin J, Basset JM (2001) Microporous Mesoporous Mater 42:269–276CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Chemical Science and EngineeringTianjinPeople’s Republic of China

Personalised recommendations