Sustainable Process for the Synthesis of Value-Added Products Using Glycerol as a Useful Raw Material

  • Young Chul Kim
  • Dong Ju MoonEmail author


The growth of the production of biodiesel has led to an overproduction of crude glycerol as a by-product. In order to secure the competitiveness of the biodiesel industry, the utilization of crude glycerol is emerging as a new and challenging research field. This review paper summarizes the glycerol conversion technology published by our laboratory for the production of value-added chemicals, in four categories: (1) glycerol steam reforming for hydrogen production; (2) glycerol hydrogenolysis into 1, 2-propanediol; (3) glycerol dehydration for acrolein production; and (4) glycerolysis of urea for glycerol carbonate production. We consider that the suggested catalysts are desirable candidates for the production of each chemical from glycerol. Further studies of the demonstration of pilot plant and process optimization are needed for commercial applications.


Glycerol Steam reforming Hydrogenolysis Dehydration of glycerol Glycerolysis 



The authors gratefully acknowledge all of their co-workers for their valuable research contributions that are summarized in the present review. Also, the authors are grateful for the financial support (Grant No. 2E28340) from the Korea Institute of Science and Technology (KIST), and the data integration support of Ms. Nasim Ghaffari Saeidabad.


  1. 1.
    Sahraei OAZ, Larachi F, Abatzoglou N, Iliuta MC (2017) Appl Catal B 219:183–193CrossRefGoogle Scholar
  2. 2.
    Demirbas A, Karslioglu S (2007) Energy Sources Part A 29:133–141CrossRefGoogle Scholar
  3. 3.
    Poddar T, Jagannath A, Almansoori A (2015) Energy Procedia 75:17–22CrossRefGoogle Scholar
  4. 4.
    Veiga S, Faccio R, Segobia D, Apesteguía C, Bussi J (2017) Int J Hydrog Energy 42:30525–30534CrossRefGoogle Scholar
  5. 5.
    Eze VC, Harvey AP (2018) Chem Eng J 347:41–51CrossRefGoogle Scholar
  6. 6.
    Tamošiūnas A, Valatkevičius P, Gimžauskaitė D, Valinčius V, Jeguirim M (2017) Int J Hydrog Energy 42:12896–12904CrossRefGoogle Scholar
  7. 7.
    Moon DJ (2016) Development of process on the production of hydrogen and conversion technology of glycerol. 10033687 KIST, KoreaGoogle Scholar
  8. 8.
    Rodrigues A, Bordado JC, Santos RGD (2017) Energies 10:1817CrossRefGoogle Scholar
  9. 9.
    Silva JM, Soria MA, Madeira LM (2016) Int J Hydrog Energy 41:1408–1418CrossRefGoogle Scholar
  10. 10.
    Moon DJ (2008) Catal Surv Asia 12:188–202CrossRefGoogle Scholar
  11. 11.
    Gillan C, Fowles M, French S, Jackson SD (2013) Ind Eng Chem Res 52:13350–13356CrossRefGoogle Scholar
  12. 12.
    Moon DJ (2011) Catal Surv Asia 15:25–36CrossRefGoogle Scholar
  13. 13.
    Yang EH (2017) Steam CO2 reforming of methane over Ni-based perovskite catalysts for application in GTL-FPSO process. Ph.D. thesis, University of Science and TechnologyGoogle Scholar
  14. 14.
    Zarei Senseni A, Rezaei M, Meshkani F (2017) Chem Eng Res Des 123:360–366CrossRefGoogle Scholar
  15. 15.
    Avasthi KS, Reddy RN, Patel S (2013) Procedia Eng 51:423–429CrossRefGoogle Scholar
  16. 16.
    Cho SH (2013) Aqueous phase reforming of glycerol over ni-based catalysts. Korea University, SeoulGoogle Scholar
  17. 17.
    Hirai T, Ikenaga N-O, Miyake T, Suzuki T (2005) Energy Fuels 19:1761–1762CrossRefGoogle Scholar
  18. 18.
    Kunkes EL, Soares RR, Simonetti DA, Dumesic JA (2009) Appl Catal B 90:693–698CrossRefGoogle Scholar
  19. 19.
    Bepari S, Pradhan NC, Dalai AK (2017) Catal Today 291:36–46CrossRefGoogle Scholar
  20. 20.
    Choi Y, Kim ND, Baek J, Kim W, Lee HJ, Yi J (2011) Int J Hydrog Energy 36:3844–3852CrossRefGoogle Scholar
  21. 21.
    Ebshish A, Yaakob Z, Taufiq-Yap YH, Bshish A, Tasirin SM (2012) Power Energy 226:1060–1075CrossRefGoogle Scholar
  22. 22.
    Yus M, Soler J, Herguido J, Menéndez M (2018) Catal Today 299:317–327CrossRefGoogle Scholar
  23. 23.
    Zamzuri NH, Mat R, Saidina Amin NA, Talebian-Kiakalaieh A (2017) Int J Hydrog Energy 42:9087–9098CrossRefGoogle Scholar
  24. 24.
    Charisiou ND, Siakavelas G, Papageridis KN, Baklavaridis A, Tzounis L, Polychronopoulou K, Goula MA (2017) Int J Hydrog Energy 42:13039–13060CrossRefGoogle Scholar
  25. 25.
    Choi GY, Kim YC, Moon DJ, Seo G, Park NC (2013) J Nanosci Nanotechnol 13:653–656CrossRefGoogle Scholar
  26. 26.
    Sánchez EA, D’angelo MA, Comelli RA (2010) Int J Hydrog Energy 35:5902–5907CrossRefGoogle Scholar
  27. 27.
    Nichele V, Signoretto M, Menegazzo F, Gallo A, Dal Santo V, Cruciani G, Cerrato G (2012) Appl Catal B 111–112:225–232CrossRefGoogle Scholar
  28. 28.
    Adhikari S, Fernando SD, To SDF, Bricka RM, Steele PH, Haryanto A (2008) Energy Fuels 22:1220–1226CrossRefGoogle Scholar
  29. 29.
    Tomishige K, Li D, Tamura M, Nakagawa Y (2017) Catal Sci Technol 7:3952–3979CrossRefGoogle Scholar
  30. 30.
    Go G-S, Go Y-J, Lee H-J, Moon D-J, Park N-C, Kim Y-C (2016) J Nanosci Nanotechnol 16:1855–1858CrossRefGoogle Scholar
  31. 31.
    Kim S-H, Go Y-J, Park N-C, Kim J-H, Kim Y-C, Moon D-J (2015) J Nanosci Nanotechnol 15:522–526CrossRefGoogle Scholar
  32. 32.
    Demsash HD, Kondamudi KVK, Upadhyayula S, Mohan R (2018) Fuel Process Technol 169:150–156CrossRefGoogle Scholar
  33. 33.
    Mitran G, Pavel OD, Florea M, Mieritz DG, Seo D-K (2016) Catal Commun 77:83–88CrossRefGoogle Scholar
  34. 34.
    Shao S, Shi A-W, Liu C-L, Yang R-Z, Dong W-S (2014) Fuel Process Technol 125:1–7CrossRefGoogle Scholar
  35. 35.
    Cho SH, Moon DJ (2011) J Nanosci Nanotechnol 11:7311–7314CrossRefGoogle Scholar
  36. 36.
    Karthikeyan D, Shin GS, Moon DJ, Kim JH, Park NC, Kim YC (2011) J Nanosci Nanotechnol 11:1443–1446CrossRefGoogle Scholar
  37. 37.
    Lee H-J, Shin GS, Kim Y-C (2015) Korean J Chem Eng 32:1267–1272CrossRefGoogle Scholar
  38. 38.
    Seretis A, Tsiakaras P (2016) Renew Energy 85:1116–1126CrossRefGoogle Scholar
  39. 39.
    Moon DJ, Cho SH, Jung JS, Yang EH, Lee SH, Method for manufacturing micro-macro channel reactor. Korea Patent No: 2010–0042238Google Scholar
  40. 40.
    Cho SH, Moon DJ (2010) Asian conference on innovative energy and environmental chemical engineering, ThailandGoogle Scholar
  41. 41.
    Schwengber CA, Alves HJ, Schaffner RA, Da Silva FA, Sequinel R, Bach VR, Ferracin RJ (2016) Renew Sust Energ Rev 58:259–266CrossRefGoogle Scholar
  42. 42.
    Nakagawa Y, Tomishige K (2011) Catal Sci Technol 1:179–190CrossRefGoogle Scholar
  43. 43.
    Dieuzeide ML, De Urtiaga R, Jobbagy M, Amadeo N (2017) Catal Today 296:19–25CrossRefGoogle Scholar
  44. 44.
    Nakagawa Y, Tamura M, Tomishige K (2014) ‎J Mater Chem A 2:6688–6702CrossRefGoogle Scholar
  45. 45.
    Tomishige K, Nakagawa Y, Tamura M (2017) Green Chem 19:2876–2924CrossRefGoogle Scholar
  46. 46.
    Kant A, He Y, Jawad A, Li X, Rezaei F, Smith JD, Rownaghi AA (2017) Chem Eng J 317:1–8CrossRefGoogle Scholar
  47. 47.
    Furikado I, Miyazawa T, Koso S, Shimao A, Kunimori K, Tomishige K (2007) Green Chem 9:582–588CrossRefGoogle Scholar
  48. 48.
    Akiyama M, Sato S, Takahashi R, Inui K, Yokota M (2009) Appl Catal A 371:60–66CrossRefGoogle Scholar
  49. 49.
    Freitas IC, Manfro RL, Souza MMVM (2018) Appl Catal B 220:31–41CrossRefGoogle Scholar
  50. 50.
    Al Ameen A, Mondal S, Pudi SM, Pandhare NN, Biswas P (2017) Energy Fuels 31:8521–8533CrossRefGoogle Scholar
  51. 51.
    Meher LC, Gopinath R, Naik SN, Dalai AK (2009) Ind Eng Chem Res 48:1840–1846CrossRefGoogle Scholar
  52. 52.
    Lee S-H, Moon DJ (2011) Catal Today 174:10–16CrossRefGoogle Scholar
  53. 53.
    Lee S-Y, Jung J-S, Yang E-H, Lee K-Y, Moon DJ (2015) J Nanosci Nanotechnol 15:8783–8789CrossRefGoogle Scholar
  54. 54.
    Nimlos MR, Blanksby SJ, Qian X, Himmel ME, Johnson DK (2006) J Phys Chem A 110:6145–6156CrossRefGoogle Scholar
  55. 55.
    García-Sancho C, Cecilia JA, Moreno-Ruiz A, Mérida-Robles JM, Santamaría-González J, Moreno-Tost R, Maireles-Torres P (2015) Appl Catal B 179:139–149CrossRefGoogle Scholar
  56. 56.
    Talebian-Kiakalaieh A, Amin NaS (2015) Catal Today 256:315–324CrossRefGoogle Scholar
  57. 57.
    Lee YY, Ok HJ, Moon DJ, Kim JH, Park NC, Kim YC (2013) J Nanosci Nanotechnol 13:339–343CrossRefGoogle Scholar
  58. 58.
    Katryniok B, Paul S, Bellière-Baca V, Rey P, Dumeignil F (2010) Green Chem 12:2079–2098CrossRefGoogle Scholar
  59. 59.
    Wang D, Zhang X, Cong X, Liu S, Zhou D (2018) Appl Catal A 555:36–46CrossRefGoogle Scholar
  60. 60.
    Wu Y, Song X, Zhang J, Li S, Yang X, Wang H, Wei R, Gao L, Zhang J, Xiao G (2018) J Taiwan Inst of Chem Eng 87:131–139CrossRefGoogle Scholar
  61. 61.
    Fernandes GP, Yadav GD (2018) Catal Today 309:153–160CrossRefGoogle Scholar
  62. 62.
    Narkhede N, Patel A (2015) RSC Adv 5:52801–52808CrossRefGoogle Scholar
  63. 63.
    Park J-H, Choi JS, Woo SK, Lee SD, Cheong M, Kim HS, Lee H (2012) Appl Catal A 433–434:35–40CrossRefGoogle Scholar
  64. 64.
    Wang D, Zhang X, Liu C, Cheng T (2015) React Kinet Mech Cat 115:597–609CrossRefGoogle Scholar
  65. 65.
    Moon DJ, Yang EH, Jung JS, Kim NY, Noh YS, Lee SY, Lee JS, Choi GR, Ramesh S (2015) Pseudo hydrotalcite catalyst for preparing glycerol carbonate. Korea Patent No.: 101516374Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and the Research Institute for CatalysisChonnam National UniversityGwangjuRepublic of Korea
  2. 2.Clean Energy Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea

Personalised recommendations