Advertisement

Recent Advances on the Use of Nickel Nano Layered Double Hydroxides as Green, and Efficient, Catalysts for Water Splitting

  • 72 Accesses

Abstract

This review focusses on the recent developments in designing Layered Double Hydroxides (LDHs) with conductive, interlayer anion replacement, for efficient hydrogen fuel production by water splitting through Oxygen Evolution Reactions (OER) and Hydrogen Evolution Reactions (HER). Nickel nano structured catalysts improves OER performance are highlighted in detail in terms of compositional differences between transitional metal components, and challenges in future designing of rationalized Ni and Ni nano LDHs. The layered structure has exceptional flexibility of incorporating mixed valence transition metal ions into the LDHs structure in different compositions and this opens the massive potential to design high-performance LDHs catalysts on the molecular and nanometer scales. LDHs such as NiCoFe LDHs, Ni foam, Co Ni nano spheres, RuO2, Ir(dppe)2Cl, NiS2, Ni–N–Co-doped carbon nano fibers, NiCoSe2/cHRD are attracting increasing interest in the field of water splitting into hydrogen and oxygen due to their unique physicochemical properties. The highlighted summary will provide useful information in the development of novel Ni LDHs catalysts, which enables better understanding of OER properties valuable to address key issues. Increased fundamental understanding of water splitting catalysts would allow for rationally-directed improvements.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3 
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

References

  1. 1.

    Zhengyang C, Xiuming B, Ping W, Johnny CH, Junhe Y, Xianying W (2019) J Mater Chem A 7:5069–5089

  2. 2.

    Wang Z, Long X, Yang S (2018) ACS Omega 3:16529–16541

  3. 3.

    Carmo M, Fritz DL, Mergel J, Stolten D (2013) Int J Hydrogen Energy 38:4901–4934

  4. 4.

    Yulian N, Ruiyi L, Zaijun L, Yinjun F, Junkang L (2013) Electrochim Acta 94:360–365

  5. 5.

    Over H (2012) Chem Rev 112:3356–3426

  6. 6.

    Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M (2014) Science 345:1593–1596

  7. 7.

    Lee Y, Suntivich J, Kevin JM, Erin EP, Yang S (2012) J Phys Chem Lett 3:399–404

  8. 8.

    Ming F, Liang H, Shi H, Xu X, Mei G, Wang Z (2016) J Mater Chem A 4:15148–15155

  9. 9.

    Liang H, Gandi AN, Anjum DH, Wang X, Schwingenschlög U, Alshareef HN (2016) Nano Lett 16:7718–7725

  10. 10.

    London J, Demeter E, Inoglu N, Keturakis C, Wachs IE, Vasic R, Frenkel AI, Kitchin JR (2012) ACS Catal 2:1793–1801

  11. 11.

    Qi J, Zhang W, Cao R (2017) Adv Energy Mater 7:1701620–1701626

  12. 12.

    Li C, Wei M, Evans DG, Duan X (2014) Small 10:4469–4486

  13. 13.

    Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) J Am Chem Soc 136:6744–6753

  14. 14.

    Louie MW, Bell AT (2013) J Am Chem Soc 135:12329–12337

  15. 15.

    Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452–8455

  16. 16.

    Gong M, Zhou W, Tsai M-C, Zhou J, Guan M, Lin M-C, Zhang B, Hu Y, Wang D-Y, Yang J (2014) Nat Commun 5:4695–4695

  17. 17.

    Tang C, Wang HF, Zhu X-L, Li BQ, Zhang Q (2016) Part Part Syst Charact 33:473–486

  18. 18.

    Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X (2018) J Am Chem Soc 140:7748–7759

  19. 19.

    Gu Z, Atherton JJ, Xu ZP (2015) Chem. Commun 51:3024–3036

  20. 20.

    Zhao Y, Li B, Wang Q, Gao W, Wang CJ, Wei M, Evans DG, Duan X, Hare DO (2014) J Chem Sci 5:951–958

  21. 21.

    Liu S, Lee SC, Patil U, HackeryI S, Kang S, Zhang K, Park JH, Chung KY, Jun SC (2017) J Mater Chem A 5:1043–1049

  22. 22.

    Wang Q, Shang L, Shi R, Zhang X, Zhao Y, Waterhouse GIN, Wu L-Z, Tung C-H, Zhang T (2017) Adv Energy Mater 7:1700467

  23. 23.

    Ribeiro LNM, Alcantara ACS, Darder M, Aranda P, Araujo-Moreira FM, Ruiz-Hitzky E (2014) Int J Pharm 463:1–9

  24. 24.

    Choudary BM, Kantam ML, Rahman A, Reddy CV, Koteshwar Rao K (2001) Angew Chem Int Ed 40:763–766

  25. 25.

    Shan RR, Yan LG, Yang K, Hao YF, Du B (2015) J Hazard Mater 299:42–46

  26. 26.

    Liang R, Tian R, Ma L, Zhang L, Hu Y, Wang J, Wei M, Yan D, Evans DG, Duan X (2014) Adv Funct Mater 24:3144

  27. 27.

    Luo J, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Gratzel M (2014) Science 345:1593

  28. 28.

    Ning F, Shao M, Zhang C, Xu S, Wei M, Duan X (2014) Nano Energy 7:134

  29. 29.

    Shi H, Liang H, Ming F, Wang Z (2017) Chem Int Ed 56:573–577

  30. 30.

    Hunter BM, Hieringer W, Winkler J, Gray H, Müller A (2016) Energy Environ Sci 9:1734

  31. 31.

    Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng M-J, Sokaras D, Weng T-C, Alonso-Mori R, Davis RC, Bargar JR, Norskov JK, Nilsson A, Bell AT (2015) J Am Chem Soc 137:1305

  32. 32.

    Leung DYC, Fu XL, Wang CF, Ni M, Leung MKH, Wang XX, Fu XZ (2010) ChemSuschem 3:681–694

  33. 33.

    Gao X, Zhang H, Li Q, Yu X, Hong Z, Zhang X, Liang C, Lin Z (2016) Angew Chem Int Ed 55:6290–6294

  34. 34.

    Feng L-L, Yu G, Wu Y, Li G-D, Li H, Sun Y, Asefa T, Chen W, Zou X (2015) J Am Chem Soc 137:14023–14026

  35. 35.

    Ledendecker M, KrickCalderón S, Papp C, Steinrück H-P, Antonietti M, Shalom M (2015) Angew Chem Int Ed 54:12361

  36. 36.

    Anjum MAR, MamutSait O, Minkyung K, Min HL, NoeJung P, Jae SL (2018) Nano Energy 51:286–293

  37. 37.

    Shuaipeng W, Li X, Weixin L (2018) Appl Surf Sci 457:156–163

  38. 38.

    Yang Y, Zhang K, Lin H, Li X, Chan HC, Yang L, Gao Q (2017) ACS Catal 7:2357–2366

  39. 39.

    Xiao Y, Feng L, Hu C, Fateev V, Liu C, Xing W (2015) RSC Adv 5:61900–61905

  40. 40.

    Liu ZQ, Chen GF, Zhou PL, Li N, Su YZ (2016) J Power Sources 317:1–9

  41. 41.

    Wu Z-Y, Hu B-C, Wu P, Liang H-W, Yu Z-L, Lin Y, Zheng Y-R, Li Z, Yu S-H (2016) Asia Mater 8:e288

  42. 42.

    Wu Z-Y, Liang H-W, Chen L-F, Hu B-C, Yu S-H (2016) Acc Chem Res 49:96–105

  43. 43.

    Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y (2015) J Am Chem Soc 137:688–2694

  44. 44.

    Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X (2013) Angew Chem Int Ed 52:371–375

  45. 45.

    Deng J, Ren P, Deng D, Yu L, Yang F, Bao X (2014) Energy Environ Sci 7:919–1923

  46. 46.

    Liu Y, Hua X, Xiao C, Zhou T, Huang P, Guo Z, Pan B, Xie Y (2016) J Am Chem Soc 138:5087–5092

  47. 47.

    Ming F, Liang H, Shi H, Xu X, Mei G, Wang Z (2016) MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J Mater Chem A 4:15148–15155

  48. 48.

    Liang H, Shi H, Zhang D, Ming F, Wang R, Zhuo J, Wang Z (2016) Chem Mater 28:5587–5591

  49. 49.

    Liang H, Gandi AN, Xia C, Hedhili MN, Anjum DH, Schwingenschlög U, Alshareef HN (2017) ACS Energy Lett 2:718–7725

  50. 50.

    Jiang Z, Li Z, Qin Z, Sun H, Jiao X, Chen D (2013) Nanoscale 5:11770–11775

  51. 51.

    Ming F, Hanfeng L, Huanhuan S, Gui M, Zhoucheng W (2017) Electrochim Acta 250:167–173

  52. 52.

    Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R (2004) J Electron Spectrosc 135:167–175

  53. 53.

    Walter MG (2010) Chem Rev 110:6446–6473

  54. 54.

    McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) J Am Chem Soc 135:16977–16987

  55. 55.

    Song F, Hu X (2014) Cat Commun 5:4477

  56. 56.

    Ma W (2015) ACS Nano 9:1977–1984

  57. 57.

    Song F, Hu X (2014) J Am Chem Soc 136:16481–16484

  58. 58.

    Lopes T, Andrade L, Ribeiro HA, Mendes A (2010) Int J Hydrogen Energy 35:1601–11608

  59. 59.

    Long X, Xiao S, Wang Z, Zheng X, Yang S (2015) Chem Commun 51:1120–1123

Download references

Acknowledgements

The authors acknowledges University of Namibia for supporting this project.

Author information

Correspondence to Ateeq Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Likius, D., Rahman, A., Zivayi, C. et al. Recent Advances on the Use of Nickel Nano Layered Double Hydroxides as Green, and Efficient, Catalysts for Water Splitting. Catal Lett (2020). https://doi.org/10.1007/s10562-019-03095-w

Download citation

Keywords

  • NiFe LDHs
  • Electro-catalysts
  • Water splitting
  • Ni co complexes