Adsorption of CH4 and SO2 on Unsupported Pd1−xMxO(101) Surface

  • Ryan Lacdao Arevalo
  • Susan Meñez Aspera
  • Roland Emerito Otadoy
  • Hiroshi NakanishiEmail author
  • Hideaki Kasai


PdO is known to efficiently catalyze the oxidation of methane but suffers tremendously from sulfur poisoning that lowers its catalytic activity. In this paper, dispersion-corrected density functional theory based first principles calculations were performed to systematically screen the metal impurities M (where M is a transition metal) on a Pd1−xMxO catalyst that promote the desired adsorption energies for CH4 and SO2 to gain insights into the design of sulfation-resistant PdO-based methane oxidation catalysts. Specific Pd1−xMxO(101) catalyst was identified to thermodynamically avoid surface sulfation while maintaining the active sites for methane activation at typical experimental conditions. Results indicate a potential route of tuning the catalytic property of PdO by the introduction of a surface metal impurity.

Graphic Abstract


Sulfur poisoning Methane oxidation Palladium oxide 



This work is supported in part by JST ACCEL Grant Number JPMJAC1501 "Creation of the Functional Materials on the Basis of the Inter-Element-Fusion Strategy and their Innovative Applications", MEXT Grant-in-Aid for Scientific Research (16K04876), and JST CREST Innovative Catalysts and Creation Technologies for the Utilization of Diverse Natural Carbon Resources: In-situ atomic characterization of catalytic reactions for the development of Innovative Catalysts (No. 17942262). Some numerical calculations were done using the computer facilities at the following institutes: High Energy Accelerator Research Organization (KEK), Institute for Solid State Physics (ISSP, University of Tokyo), Yukawa Institute for Theoretical Physics (YITP, Kyoto University), and the National Institute for Fusion Science (NIFS). RLA acknowledges the Balik Scientist Program of the Department of Science and Technology, through the Philippine Council for Industry, Energy and Emerging Technology Research and Development.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Colussi S, Arosio F, Montanari T, Busca G, Groppi G, Trovarelli A (2010) Catal. Today 155:59CrossRefGoogle Scholar
  2. 2.
    Mowery D, McCormick RL (2001) Appl. Catal. B 34:287CrossRefGoogle Scholar
  3. 3.
    Lampert JK, Shahjahan Kazi M, Farrauto RJ (1997) Appl. Catal. B 14:211CrossRefGoogle Scholar
  4. 4.
    Hoyos LJ, Praliaud H, Primet M (1993) Appl. Cata. A 98:125CrossRefGoogle Scholar
  5. 5.
    Wilburn MS, Epling WS (2017) Appl. Catal. B 589:598Google Scholar
  6. 6.
    Meeyoo V, Trimm DL, Cant NW (1998) Appl. Catal. B 16:L101CrossRefGoogle Scholar
  7. 7.
    Ciuparu D, Lyubovsky MR, Altman E, Pfefferle LD, Datye A (2002) Catal. Rev. 44:593CrossRefGoogle Scholar
  8. 8.
    Matam SK, Aguirre MH, Weidenkaff A, Ferri D (2010) J. Phys. Chem. C 114:9439CrossRefGoogle Scholar
  9. 9.
    Hellman A, Resta A, Marin NM et al (2012) J. Phys. Chem. Lett. 3:678PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Weaver JF, Hakanoglu C, Antony A, Asthagiri A (2014) Chem. Soc. Rev. 43:7536PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    McCarty JG (1995) Catal. Today 26:283CrossRefGoogle Scholar
  12. 12.
    Arevalo RL, Aspera SM, Nakanishi H (2019) Catal. Sci. Technol. 9:232Google Scholar
  13. 13.
    Van den Bossche M, Gronbeck H (2015) J. Am. Chem. Soc. 137:12035PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Stotz H, Maier L, Boubnov A, Gremminger AT, Grunwaldt J-D, Deutschmann O (2019) J. Catal. 370:152CrossRefGoogle Scholar
  15. 15.
    Gremminger A, Lott P, Merts M, Casapu M, Grunwaldt J-D, Deutschmann O (2017) Appl. Catal. B 218:833CrossRefGoogle Scholar
  16. 16.
    Briot P, Primet M (1991) Appl. Catal. 68:301CrossRefGoogle Scholar
  17. 17.
    Jones JM, Dupont VA, Brydson R, Fullerton DJ, Nasri NS, Ross AB, Westwood AVK (2003) Catal. Today 81:589CrossRefGoogle Scholar
  18. 18.
    Honkanen M et al (2016) Appl. Catal. B 182:439CrossRefGoogle Scholar
  19. 19.
    Ozawa Y, Tochihara Y, Watanabe A, Nagai M, Omi S (2004) Appl. Catal. A 259:1CrossRefGoogle Scholar
  20. 20.
    Kinnunen NM, Hirvi JT, Suvanto M, Pakkanen TA (2012) J. Mol. Catal. A 356:20CrossRefGoogle Scholar
  21. 21.
    Persson K, Jansson K, Jaras SG (2007) J. Catal. 245:401CrossRefGoogle Scholar
  22. 22.
    Huang C-J, Pan F-M, Tzeng T-C, Chang L, Sheu J-T (2009) J. Electron. Soc. 156:J28CrossRefGoogle Scholar
  23. 23.
    Kan HH, Weaver JF (2008) Surf. Sci. 602:L53CrossRefGoogle Scholar
  24. 24.
    Liang Z, Li T, Kim M, Asthagiri A, Weaver JF (2017) Science 356:299PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Arevalo RL, Aspera SM, Escano MCS, Nakanishi H, Kasai H (2017) Sci. Rep. 7:13963PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Arevalo RL, Aspera SM, Escano MCS, Nakanishi H, Kasai H (2017) J. Phys.: Condens. Matter 29:184001Google Scholar
  27. 27.
    Arevalo RL, Aspera SM, Escano MCS, Nakanishi H, Kasai H (2017) ACS Omega 2:1295PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pan L, Weaver JF, Asthagiri A (2017) Top. Catal. 60:401CrossRefGoogle Scholar
  29. 29.
    Fakhri A, Naji M (2017) J. Photochem. Photobiol. B 167:58PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Qian K, Huang W (2011) Catal. Today 164:320CrossRefGoogle Scholar
  31. 31.
    Kresse G, Furthmuller J (1996) Phys. Rev. B 54:11169CrossRefGoogle Scholar
  32. 32.
    Kresse G, Furthmuller J (1996) Comput. Mater. 6:15CrossRefGoogle Scholar
  33. 33.
    Kresse G, Hafner J (1993) Phys. Rev. B 47:558CrossRefGoogle Scholar
  34. 34.
    Kresse G, Hafner J (1994) Phys. Rev. B 49:14251CrossRefGoogle Scholar
  35. 35.
    Blochl P (1994) Phys. Rev. B 50:17953CrossRefGoogle Scholar
  36. 36.
    Kresse G, Joubert J (1999) Phys. Rev. B 59:1758CrossRefGoogle Scholar
  37. 37.
    Perdew J, Burke K, Ernzerhof M (1996) Phys. Rev. Lett. 77:3865PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Perdew J, Burke K, Wang Y (1996) Phys. Rev. B 54:16533CrossRefGoogle Scholar
  39. 39.
    Becke A (1998) Phys. Rev. A 38:3098CrossRefGoogle Scholar
  40. 40.
    Lee C, Yang W, Parr R (1988) Phys. Rev. B 37:785CrossRefGoogle Scholar
  41. 41.
    Grimme S (2004) J. Comp. Chem. 25:1463CrossRefGoogle Scholar
  42. 42.
    Weaver JF, Hakanoglu C, Hawkins JM, Asthagiri A (2010) J. Chem. Phys. 132:024709PubMedCrossRefGoogle Scholar
  43. 43.
    Hakanoglu C, Hawkins JM, Asthagiri A, Weaver JF (2010) J. Phys. Chem. C 114:11485CrossRefGoogle Scholar
  44. 44.
    Kan HH, Colmver RC, Asthagiri A, Weaver JF (2009) J. Phys. Chem. C 113:1495CrossRefGoogle Scholar
  45. 45.
    Monkhorst H, Pack J (1976) Phys. Rev. B 13:5188CrossRefGoogle Scholar
  46. 46.
    Methfessel M, Paxton A (1989) Phys. Rev. B 470:3616CrossRefGoogle Scholar
  47. 47.
    Stich I, Car R, Parrinello M, Baroni S (1989) Phys. Rev. B 39:4997CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Ryan Lacdao Arevalo
    • 1
    • 2
  • Susan Meñez Aspera
    • 1
  • Roland Emerito Otadoy
    • 2
  • Hiroshi Nakanishi
    • 1
    • 3
    • 4
    Email author
  • Hideaki Kasai
    • 1
    • 5
  1. 1.National Institute of TechnologyAkashi CollegeAkashiJapan
  2. 2.Department of PhysicsUniversity of San Carlos, Talamban CampusCebu CityPhilippines
  3. 3.Department of Applied PhysicsOsaka UniversityOsakaJapan
  4. 4.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  5. 5.Osaka UniversityOsakaJapan

Personalised recommendations