Advertisement

Effect of Graphene Oxide Prepared Under Different Conditions on Immobilized α-Amylase

  • Han Zhang
  • Shaofeng HuaEmail author
  • Lei Zhang
Article
  • 8 Downloads

Abstract

Graphene oxide (GO) has broad application prospects in the field of catalysis, especially as enzyme carrier, owing to its unique intriguing physic-chemical properties. In this paper, the layer structure and oxygen functional group content of GO which may affect the properties of the immobilized enzyme were discussed. GO was prepared from 8000 mesh and nanoscale graphite at different reaction temperatures (40 °C and 95 °C), and used as carriers to immobilize α-amylase by deposition and cross-linking methods, respectively. Several analytical tools, including AFM, FT-IR, UV–Vis, XPS, and Raman, were used to character GOs. The enzyme loading of GO-8000-40 °C-E (of GO-NM-95 °C-GA-E) was 122.1 (49.8) mg/g, which retained 94.7 (82.6) % of the free enzyme activity, the optimum pH, optimum temperature, Km and Vmax were 7.0 (7.0), 70 (75) °C, 18.837 (39.989) mg/mL and 1.584 (1.842) μmol/(mL·min), respectively. Overall results indicated that 8000 mesh graphite was suitable for the preparation of immobilized enzyme by deposition method, while nano-graphite had an advantage in cross-linking immobilized enzyme.

Graphic Abstract

Keywords

Graphene oxide Oxidation degree Enzyme immobilization Enzyme activity 

Notes

Acknowledgements

The project was supported by Open project of National Key Laboratory of Chemical Resource Engineering (Grants CRE-2017-C-305); Program for Innovative Research Team of Henan Polytechnic University (Grants T2018-3); Projects of Henan Province (Grants 142102210049); Key projects of science and technology of Henan Provincial Department of Education (Grants 14B150026).

References

  1. 1.
    Wang JH, Tang MZ, Yu XT, Xu CM, Yang HM, Tang JB (2019) Colloid Surf B 177:506–511CrossRefGoogle Scholar
  2. 2.
    Kashefi S, Borghei SM, Mahmoodi NM (2019) J Mol Liq 276:153–162CrossRefGoogle Scholar
  3. 3.
    Wang MF, Qi W, Su RX, He ZM (2015) Chem Eng Sci 135:21–32CrossRefGoogle Scholar
  4. 4.
    Gao FQ, Guo YJ, Fan XT, Hu MC, Li SN, Zhai QG, Jiang YC, Wang XT (2019) Biochem Eng J 143:101–109CrossRefGoogle Scholar
  5. 5.
    Liu MQ, Weng XY, Wang Q, Huo WK, Xu X (2017) Catal Lett 147:765–775CrossRefGoogle Scholar
  6. 6.
    Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M (2015) Sensors 15:24681–24697CrossRefGoogle Scholar
  7. 7.
    Pervez S, Nawaz MA, Aman A, Qayyum S, Nawaz F, Ul Qader SA (2018) Catal Lett 148:2643–2653CrossRefGoogle Scholar
  8. 8.
    Kohori NA, da-Silva MKL, Cesarino I (2018) J Solid State Electrochem 22:141–148CrossRefGoogle Scholar
  9. 9.
    Li QZ, Fan F, Wang Y, Feng W, Ji PJ (2013) Ind Eng Chem Res 52:6343–6348CrossRefGoogle Scholar
  10. 10.
    Urbanova V, Jayaramulu K, Schneemann A, Kment S, Fischer RA, Zbaril R (2018) ACS Appl Mater Interfaces 10:41089–41097CrossRefGoogle Scholar
  11. 11.
    Royvaran M, Taheri-Kafrani A, Isfahani AL, Mohammadi S (2016) Chem Eng J 288:414–422CrossRefGoogle Scholar
  12. 12.
    Fathy M, Moghny TA, Mousa MA (2019) Arab J Sci Eng 44:305–313CrossRefGoogle Scholar
  13. 13.
    Sur UK, Saha A, Datta A, Ankamwar B, Surti F, Roy SD, Roy D (2016) Bull Mater Sci 39:159–165CrossRefGoogle Scholar
  14. 14.
    Xing YH, Lu PF, Wang J, Yang JP, Chen YP (2017) Appl Surf Sci 396:243–248CrossRefGoogle Scholar
  15. 15.
    Fathy M, Hosny R, Keshawy M, Gafer A (2019) Graphene Technol 4:33–40CrossRefGoogle Scholar
  16. 16.
    Eigler S, Dotzer C, Hirsch A (2012) Carbon 50:3666–3673CrossRefGoogle Scholar
  17. 17.
    Hermanova S, Zarevucka M, Bousa D, Pumera M, Sofer Z (2015) Nanoscale 7:5852–5858CrossRefGoogle Scholar
  18. 18.
    Perreault F, Faria AF, Nejati S, Elimelech M (2015) ACS Nano 9:7226–7236CrossRefGoogle Scholar
  19. 19.
    Dimiev AM, Tour JM (2014) ACS Nano 8:3060–3068CrossRefGoogle Scholar
  20. 20.
    Peter (1995) Methods Enzymol 17:149-158Google Scholar
  21. 21.
    Tang ZX, Qian JQ, Shi LE (2007) Mater Lett 61:37–40CrossRefGoogle Scholar
  22. 22.
    Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD (2009) Langmuir 25:5957–5968CrossRefGoogle Scholar
  23. 23.
    Movahedi M, Shariat SZAS, Nazem H (2019) Catal Lett 149:562–573CrossRefGoogle Scholar
  24. 24.
    Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I (2003) Langmuir 19:6050–6055CrossRefGoogle Scholar
  25. 25.
    Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  26. 26.
    Pao CW, Liu TH, Chang CC, Srolovitz DJ (2012) Carbon 50:2870–2876CrossRefGoogle Scholar
  27. 27.
    Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K (2013) Adv Mater 25:2258–2268CrossRefGoogle Scholar
  28. 28.
    Perreault F, de-Faria AF, Elimelech M (2015) Chem Soc Rev 44:5861–5896CrossRefGoogle Scholar
  29. 29.
    Chen JN, Peng H, Wang XP, Shao F, Yuan ZD, Han HY (2014) Nanoscale 6:1879–1889CrossRefGoogle Scholar
  30. 30.
    Zhuang W, He LJ, Zhu JH, Zheng JW, Liu XJ, Dong YH, Wu JL, Zhou JW, Chen Y, Ying HJ (2016) Colloid Surf B 145:785–794CrossRefGoogle Scholar
  31. 31.
    Li YR, Wang HR, Lu JW, Chu A, Zhang L, Ding ZY, Xu S, Gu ZH, Shi GY (2019) Bioresour Technol 274:9–17CrossRefGoogle Scholar
  32. 32.
    Sun J, Wang CH, Wang YZ, Ji SX, Liu WF (2019) J Appl Polym Sci 136:47784CrossRefGoogle Scholar
  33. 33.
    Ahmed SA, Mostafa FA, Ouis MA (2018) Int J Biol Macromol 112:371–382CrossRefGoogle Scholar
  34. 34.
    Sankar K, Achary A, Mehala N, Rajendran L (2017) Catal Lett 147:2232–2245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHenan Polytechnic UniversityJiaozuoChina

Personalised recommendations