A Stable Zn-Based Metal–Organic Framework as an Efficient Catalyst for Carbon Dioxide Cycloaddition and Alcoholysis at Mild Conditions

  • Zhiqiang Luo
  • Jun WangEmail author
  • Yanqing He
  • Qiong Ao
  • Qiang Deng
  • Zheling Zeng
  • Hongming Wang
  • Shuguang DengEmail author


Developing highly efficient heterogeneous catalysts for cycloaddition of CO2 and epoxides to produce cyclic carbonates is promising but challenging. In this work, a novel three-dimensional metal organic framework (MOF) with cylinder pore systems and unsaturated Zn sites has been demonstrated as potent candidate in CO2 fixation at mild and solvent-free conditions. The Zn(atz)(bdc)0.5, where atz = aminotriazole and H2bdc = terephthalic, exhibits microporous nature that can regulate the catalytic interaction of active centers and substrates. The structure stability has been systematically investigated and proven to be sufficient for practical application. Furthermore, the cooperative effects of porosity, CO2 binding affinity, activation centers, and synergism with co-catalyst have been deeply investigated. Moreover, high propylene epoxide conversion (97%) and selectivity (> 99%) have been achieved at mild conditions (60 °C and 1 MPa) with excellent cycle stability. Owing to the well-defined pore system, an obvious substrates selectivity has been clearly observed. A possible catalytic mechanism has been proposed and verified by DFT calculations. Furthermore, the prepared Zn-MOF can also be used as an efficient heterogeneous catalyst for the reaction of epoxides with alcohols to produce β-alkoxy alcohol.

Graphic Abstract


Metal organic frameworks Cycloaddition CO2 conversion Alcoholysis 



This research work is partially supported by the National Natural Science Foundation of China (No.51672186 and 21908090), Natural Science Foundation of Jiangxi Province (No.20192ACB21015), and the start-up funds of Nanchang University and Arizona State University.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

10562_2019_3053_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2782 kb)


  1. 1.
    Maina J, Gonzalo C, Kong L et al (2017) Mater Horiz 4:345–361CrossRefGoogle Scholar
  2. 2.
    Wang J, Zhang P, Liu L et al (2018) Chem Eng J 348:57–66CrossRefGoogle Scholar
  3. 3.
    Zhao Z, Qin J, Zhang C et al (2017) Inorg Chem 56:4568–4575CrossRefGoogle Scholar
  4. 4.
    Martínez J, Osma J, Earlam A et al (2005) Chem Eur J 21:9850–9862CrossRefGoogle Scholar
  5. 5.
    He H, Perman J, Zhu G et al (2016) Small 46:6309–6324CrossRefGoogle Scholar
  6. 6.
    Gao W, Tsai C, Wojtas L et al (2016) Inorg Chem 55:7291–9294CrossRefGoogle Scholar
  7. 7.
    Li P, Wang X, Liu J et al (2017) Chem Mater 29:9256–9261CrossRefGoogle Scholar
  8. 8.
    Kim Y, Hyun K, Ahn D et al (2019) Chemsuschem 12(18):4211–4220CrossRefGoogle Scholar
  9. 9.
    Yamaguchi K, Ebitani K, Yoshida et al (1999) J Am Chem Soc 121:4526–4527CrossRefGoogle Scholar
  10. 10.
    Huang J, Shi M (2003) J Org Chem 68:6705–6709CrossRefGoogle Scholar
  11. 11.
    Du Y, Yang H, Wan S et al (2017) J Mater Chem A. 5:9163–9168CrossRefGoogle Scholar
  12. 12.
    Liu T, Liang J, Huang Y et al (2016) Chem Commun 52:13288–13291CrossRefGoogle Scholar
  13. 13.
    Fukuoka S, Kawamura M, Komiya K et al (2003) Green Chem 5:497–507CrossRefGoogle Scholar
  14. 14.
    Stock N, Biswas S (2012) Chem Res 43(16):933–969Google Scholar
  15. 15.
    Zhu X, Zheng H, Wei X et al (2013) Chem Commun 49(13):1276–1278CrossRefGoogle Scholar
  16. 16.
    Wang Y, Hu Z, Cheng Y et al (2017) Ind Eng Chem Res 56:4508–4516CrossRefGoogle Scholar
  17. 17.
    Taherimehr M, Voorde B, Wee L et al (2017) Chemsuschem 10:1283–1291CrossRefGoogle Scholar
  18. 18.
    Liu L, Wang S, Han Z et al (2016) Inorg Chem 55:3558–3565CrossRefGoogle Scholar
  19. 19.
    Cao J, Shan W, Wang Q et al (2019) ACS Appl Mater Interfaces 11(6):6031–6041CrossRefGoogle Scholar
  20. 20.
    Kresse G, Hafner J (1993) Phys Rev B 48(17):13115–13118CrossRefGoogle Scholar
  21. 21.
    Kresse G (1996) Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  22. 22.
    Kresse G, Joubert D (1999) Phys Rev B 59(15):1758–1775CrossRefGoogle Scholar
  23. 23.
    Vaidhyanathan R, Iremonger S, Shimizu G et al (2010) Science 330(6004):650–653CrossRefGoogle Scholar
  24. 24.
    Liu B, Zhao R, Yang G et al (2013) CrystEngComm 15:2057–2060CrossRefGoogle Scholar
  25. 25.
    Babu R, Kathalikkattil A, Roshan R et al (2016) Green Chem 18:232–242CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Zhang P, Yu W et al (2019) ACS Appl Mater Interfaces 11:10680–10688CrossRefGoogle Scholar
  27. 27.
    Huang Y, Qin W, Li Y et al (2012) Dalton Trans 41(31):9283–9285CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Zhang P, Yu W et al (2018) Ind Eng Chem Res 57:14191–14201CrossRefGoogle Scholar
  29. 29.
    Wu, X, Bao, Z, Yuan, B, et al (2013) Microporous Mesoporous Mater 180(9): 676, 114–122Google Scholar
  30. 30.
    Yang Q, Xue C, Zhong C et al (2007) Am Inst Chem Eng 53(11):2832–2840CrossRefGoogle Scholar
  31. 31.
    Liu S, Wang B, Wang Z et al (2018) Dalton Trans 47:11925–11933CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Poyang Environment and Resource Utilization (Nanchang University)Ministry of EducationNanchangPeople’s Republic of China
  2. 2.School of Resource Environmental and Chemical EngineeringNanchang UniversityNanchangPeople’s Republic of China
  3. 3.Institute for Advanced StudyNanchang UniversityNanchangChina
  4. 4.School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA

Personalised recommendations