Study of Ethanol/Acetaldehyde to 1,3-Butadiene Over MgO–SiO2 Catalyst: Comparative Investigation of Deactivation Behaviour Due to Carbon Deposition

  • Minhua Zhang
  • Yu’nan Qin
  • Xuechao Tan
  • Lingtao Wang
  • Yingzhe Yu
  • Haoxi JiangEmail author


In this paper, the MgO–SiO2 catalyst was prepared with the deposition–precipitation method, which was used to catalyse the conversion of ethanol to 1,3-butadiene through a two-step process. The carbon deposition deactivation of the catalyst was mainly caused by that the carbon species occupied the acid-basic active sites on the catalyst surface. The carbon deposition mainly includes chain alkanes and aromatic compounds from outer to inner layers, and its site was mainly MgSiO3, followed by MgO, while SiO2 showed weak carbon deposition ability.

Graphic Abstract


1,3-Butadiene Carbon decomposition Ethanol MgO–SiO2 catalyst 



This work was supported by the National Scientific Foundation of China (Grant Nos. 21808157 and 21978211).

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

10562_2019_3049_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1059 kb)


  1. 1.
    Makshina EV, Dusselier M, Janssens W et al (2014) Chem Soc Rev 43:7917PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Akiyama S, Miyaji A, Hayashi Y et al (2018) J Catal 359:184CrossRefGoogle Scholar
  3. 3.
    Toussaint WJ, Dunn JT, Jackson DR (1947) Ind Eng Chem 39:120CrossRefGoogle Scholar
  4. 4.
    Kyriienko PI, Larina OV, Soloviev SO et al (2017) Acs Sustain Chem Eng 5:2075CrossRefGoogle Scholar
  5. 5.
    Klein A, Keisers K, Palkovits R (2016) Appl Catal A 514:192CrossRefGoogle Scholar
  6. 6.
    Dagle VL, Flake MD, Lemmon TL et al (2018) Appl Catal B 236:576CrossRefGoogle Scholar
  7. 7.
    Corson BB, Stahly EE, Jones HE, Bishop HD (1949) Ind Eng Chem 41:1012CrossRefGoogle Scholar
  8. 8.
    Chae HJ, Kim TW, Moon YK et al (2014) Appl Catal B 150:596CrossRefGoogle Scholar
  9. 9.
    Jones MD, Keir CG, Iulio CD et al (2011) Catal Sci Technol 1:267CrossRefGoogle Scholar
  10. 10.
    Romanovsky C, Jordan TE (1958) Process for the manufacture of butadieneGoogle Scholar
  11. 11.
    Maxlmoff A, Canonici O (1942) Process for the manufacture of diolefins from alcohols and aldehydesGoogle Scholar
  12. 12.
    González GMC, Murciano R, Perales ALV et al (2019) Fuel Process Technol 193:263CrossRefGoogle Scholar
  13. 13.
    Kurmach MM, Larina OV, Kyriienko PI et al (2018) ChemistrySelect 3:8539CrossRefGoogle Scholar
  14. 14.
    Pomalaza G, Vofo G, Capron M, Dumeignil F (2018) Green Chem 20:3203CrossRefGoogle Scholar
  15. 15.
    Zhang MH, Tan XC, Zhang T et al (2018) RSC Adv 8:34069CrossRefGoogle Scholar
  16. 16.
    Yan TT, Yang L, Dai WL et al (2018) J Catal 367:7CrossRefGoogle Scholar
  17. 17.
    Taifan WE, Baltrusaitis J (2018) J Phys Chem C 122:20894CrossRefGoogle Scholar
  18. 18.
    Cheong JL, Shao Y, Tan SJR et al (2016) ACS Sustain Chem Eng 4:4887CrossRefGoogle Scholar
  19. 19.
    Wang C, Zheng MY, Li XS et al (2019) Green Chem 21:1006CrossRefGoogle Scholar
  20. 20.
    Taifan WE, Yan GX, Baltrusaitis J (2017) Catal Sci Technol 7:4648CrossRefGoogle Scholar
  21. 21.
    Taifan WE, Li Y, Baltrus JP (2019) ACS Catal 9:269CrossRefGoogle Scholar
  22. 22.
    Liu C, Wu LL, Sun HH (2019) Chem Eng Technol 42:297CrossRefGoogle Scholar
  23. 23.
    Zhang MH, Gao MX, Chen JY et al (2015) RSC Adv 5:25959CrossRefGoogle Scholar
  24. 24.
    Fan D, Dong XQ, Yu YZ, Zhang MH (2017) Phys Chem Chem Phys 19:25671PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gonzalez GMC, Murciano R, Perales ALV et al (2019) Appl Catal A 570:96CrossRefGoogle Scholar
  26. 26.
    Quattlebaum WM, Toussaint WJ, Dunn JT (1947) Chem Soc 69:593CrossRefGoogle Scholar
  27. 27.
    Gorin YA, Kalinicheva NA, Khim ZO (1952) 22:1256Google Scholar
  28. 28.
    Janssens W, Makshina EV, Vanelderen P et al (2015) Chemsuschem 8:994PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Huang X, Men Y, Wang J (2017) Catal Sci Technol 7:168CrossRefGoogle Scholar
  30. 30.
    Zhu QQ, Wang B, Tan TW (2017) ACS Sustain Chem Eng 5:722CrossRefGoogle Scholar
  31. 31.
    Shylesh S, Gokhale AA, Scown CD et al (2016) Chemsuschem 9:1462PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Angelici C, Velthoen MEZ, Weckhuysen BM et al (2015) Catal Sci Technol 5:2869CrossRefGoogle Scholar
  33. 33.
    Dai W, Sun X, Tang B et al (2014) J Catal 314:10CrossRefGoogle Scholar
  34. 34.
    Simperler A, Bell RG, Foster MD (2004) J Phys Chem B 108:7152CrossRefGoogle Scholar
  35. 35.
    Bodoardo S, Chiappetta R, Fajula F (1995) Microporous Mater 3:613CrossRefGoogle Scholar
  36. 36.
    Chieregato A, Ochoa JV, Bandinelli C et al (2015) Chemsuschem 8:377PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hanspal S, Young ZD, Shou H et al (2015) ACS Catal 5:1737CrossRefGoogle Scholar
  38. 38.
    Birky TW, Kozlowski JT, Davis RJ (2013) J Catal 298:130CrossRefGoogle Scholar
  39. 39.
    Yan TT, Dai WL, Wu GJ et al (2018) ACS Catal 8:2760CrossRefGoogle Scholar
  40. 40.
    Mao JD, Schimmelmann A, Mastalerz M (2010) Energy Fuels 24:2536CrossRefGoogle Scholar
  41. 41.
    Bonardet JL, Barrage MC, Fraissard J (1995) J Mol Catal A 96:123CrossRefGoogle Scholar
  42. 42.
    Kalinkina EV, Kalinkin AM, Forsling W (2001) Int J Miner Process 61:289CrossRefGoogle Scholar
  43. 43.
    Chung SH, Angelici C, Hinterding SOM et al (2016) ACS Catal 6:4034CrossRefGoogle Scholar
  44. 44.
    Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catal Today 198:338CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Green Chemical Technology of Ministry of EducationR&D Center for Petrochemical Technology, Tianjin UniversityTianjinChina
  2. 2.Research and Development Center for Petrochemical Technology, Tianjin UniversityTianjinChina

Personalised recommendations