Advertisement

Micellar Catalysis Strategy of Cross-Condensation Reaction: The Effect of Polar Heads on the Catalytic Properties of Aminoalcohol-Based Surfactants

  • Zakaria Hafidi
  • Mohamed Ait Taleb
  • Abdallah Amedlous
  • Mohammed El AchouriEmail author
Article
  • 63 Downloads

Abstract

The effect of the polar head and the concentration of quaternary ammonium surfactants (C14EtOH, C14iPrOH, C14PrOH, where, 14 = carbon number iPrOH = iso-propanol, EtOH = ethanol, PrOH = propanol) in micellar catalysis for the cross-condensation reaction (Claisen–Schmidt) was investigated. The reaction in the Micellar-NaOH system with different concentrations of surfactants above the critical micelle concentration from 15 to 30 mmol between benzaldehyde and acetophenone was used as a model of reaction for this study. The examination of the effectiveness of the catalytic activity reveals that the compound C14EtOH has the best yield (80% of the desired product), followed by C14iPrOH and C14PrOH. The results were interpreted according to the solubilization capacity, droplet size analysis of reagents (benzaldehyde and acetophenone) in the micellar medium and stability of reaction intermediate (enolate) by the electrostatic interactions generated by positive charge of N+ quaternary ammonium atom. Therefore, the quantum calculations carried out by DFT method for surfactants in the aqueous medium, show that electrophilicity degree and the reaction yield% for three cationic surfactants varies in the same following order: C14PrOH < C14iPrOH < C14EtOH.

Graphic Abstract

Keywords

Cationic surfactant Micellar-catalysis Claisen–Schmidt Cross condensation Electrophilicity 

Notes

Supplementary material

10562_2019_3045_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (DOCX 3330 kb)

References

  1. 1.
    Bandgar BP, Gawande SS, Bodade RG, Gawande NM, Khobragade CN (2009) Bioorg Med Chem 17:24CrossRefGoogle Scholar
  2. 2.
    Insuasty B, Tigreros A, Orozco F, Quiroga J, Abonía R, Nogueras M, Adolfo S, Justo C (2010) Bioorg Med Chem 18:14CrossRefGoogle Scholar
  3. 3.
    Liaras K, Geronikaki A, Glamoclija J, Ciric A, Sokovic M (2011) Bioorg Med Chem 19:10Google Scholar
  4. 4.
    Deshpande AM, Argade NP, Natu A, Eckman J (1999) Bioorg Med Chem 7:6CrossRefGoogle Scholar
  5. 5.
    Kidwai M, Misra P (1999) Synth Commun 29:18CrossRefGoogle Scholar
  6. 6.
    Coskun D, Ahmedzade M (2013) Res Chem Intermed 40:3Google Scholar
  7. 7.
    Fang X, Yang B, Cheng Z, Zhang P, Yang M (2013) Res Chem Intermed 40:4Google Scholar
  8. 8.
    Vignesh SLGUN (2017) Res Chem Intermed 43:11Google Scholar
  9. 9.
    Varma RS, Kabalka GW, Evans LT, Pagni RM (1985) Synth Commun 15:4Google Scholar
  10. 10.
    Climent MJ, Garcia H, Primo J (1990) Catal Lett 4:1CrossRefGoogle Scholar
  11. 11.
    Saber A, Rhihil A, Nazih R, Tahir R (2001) Appl Catal A 206:2Google Scholar
  12. 12.
    Vaidya GN, Fiske S, Verma H, Lokhande S, Kumar D (2019) Green Chem 21:6CrossRefGoogle Scholar
  13. 13.
    Butler RN, Coyne AG (2010) Chem Rev 10:110Google Scholar
  14. 14.
    Grieco PA (1998) Organic synthesis in water, vol 1. Springer, DordrechtCrossRefGoogle Scholar
  15. 15.
    Chanda A, Fokin VV (2009) Chem Rev 109:2CrossRefGoogle Scholar
  16. 16.
    Li C, Chen L (2006) Chem Soc Rev 35:1CrossRefGoogle Scholar
  17. 17.
    Akram M, Yousuf S, Sarwar T, Kabir-ud-Din (2014) Colloids Surf A 441:281–290CrossRefGoogle Scholar
  18. 18.
    Dwars T, Paetzold E, Oehme G (2005) Angew Chem Int Ed 44:44CrossRefGoogle Scholar
  19. 19.
    Tehrani-bagha AR, Holmberg K (2013) Materials 6:2CrossRefGoogle Scholar
  20. 20.
    Vashishtha M, Mishra M, Shah DO (2015) J Mol Liq A 210:151–159CrossRefGoogle Scholar
  21. 21.
    Khan MN (2006) Micellar catalysis, 1st edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  22. 22.
    Vashishtha M, Mishra M, Undre S, Singh M, Shah DO (2015) J Mol Catal A 396:143–154CrossRefGoogle Scholar
  23. 23.
    Vashishtha M, Mishra M, Shah DO (2013) Appl Catal A 466:38–44CrossRefGoogle Scholar
  24. 24.
    Zayas HA, Lu A, Valade D, Amir F, Jia Z, Reilly RKO, Monteiro MJ (2013) ACS Macro Lett 2:4CrossRefGoogle Scholar
  25. 25.
    Kitawat BS, Singh M, Kale RK, Sustain ACS (2013) Chem Eng 1:8Google Scholar
  26. 26.
    Vashishtha M, Mishra M, Shah DO (2015) Green Chem 18:5Google Scholar
  27. 27.
    Isley NA, Linstadt RTH, Kelly SM, Gallou F, Lipshutz BH (2015) Org Lett 17:19CrossRefGoogle Scholar
  28. 28.
    La Sorella G, Strukul G, Scarso A (2015) Green Chem 17:2CrossRefGoogle Scholar
  29. 29.
    Mandal S, Mandal S, Biswas S, Banerjee S, Saha B (2017) Res Chem Intermed 44:3Google Scholar
  30. 30.
    Sar P, Ghosh A, Ghosh D (2014) Res Chem Intermed 41:8Google Scholar
  31. 31.
    Xu D, Pan Z (2014) Chin Chem Lett 25:8Google Scholar
  32. 32.
    Zhao Q, Zhao X, Peng H, Liu Y, Yang L, Sun J, Yang L, Shen Y (2019) Catal Sci Technol 9:13Google Scholar
  33. 33.
    Evans PA, Robinson JE, Nelson JD (1999) J Am Chem Soc 121:51Google Scholar
  34. 34.
    Schinzer D (1989) Selectivities in Lewis acid promoted reactions. Springer, DordrechtCrossRefGoogle Scholar
  35. 35.
    Corma A, Garcıa H (2003) Chem Rev 103:11CrossRefGoogle Scholar
  36. 36.
    Yamamoto H (2008) Lewis acids in organic synthesis. Wiley, WeinheimGoogle Scholar
  37. 37.
    Enchev V, Mehandzhiyski AY (2017) Int J Quantum Chem 117:11CrossRefGoogle Scholar
  38. 38.
    Mehta SK, Chaudhary S, Bhasin KK (2008) J Colloid Interface Sci 321:2Google Scholar
  39. 39.
    Ganesh KN, Mltra P, Balasubramanlan D (1982) J Phys Chem 86:22CrossRefGoogle Scholar
  40. 40.
    Sabatino P, Szczygiel A, Sinnaeve D, Hakimhashemi M, Saveyn H, Martins JC, Van Der Meeren P (2010) Colloids Surf A 370:1–3CrossRefGoogle Scholar
  41. 41.
    Ouarti N, Blagoeva IB, El Seoud OA, Ruasse M-F (2001) J Phys Org Chem 14:11CrossRefGoogle Scholar
  42. 42.
    Loopez-Cornejo P, Mozo JD, Roldan E, Domınguez M, Sanchez F (2002) Chem Phys Lett 352:33–38CrossRefGoogle Scholar
  43. 43.
    Hafidi Z, El Achouri M (2018) J Surfactants Deterg 22:3Google Scholar
  44. 44.
    Rosen MJ, Kunjappu JT (2012) Surfactants and phenomena, 4th edn. Wiley, HobokenCrossRefGoogle Scholar
  45. 45.
    Jalsenjak N, Tezak D (2004) Chem Eur J 10(20):5000–5007CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zana R (1980) J Colloid Interface Sci 78:2CrossRefGoogle Scholar
  47. 47.
    Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  48. 48.
    Becke AD (1993) J Chem Phys 98:7Google Scholar
  49. 49.
    Amovilli C, Barone V, Cammi R, Cancès E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1999) Adv Quant Chem 32:227–261CrossRefGoogle Scholar
  50. 50.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CT Google Scholar
  51. 51.
    Pearson RG (1988) Inorg Chem 27:4CrossRefGoogle Scholar
  52. 52.
    Pearson RG (1986) Proc Natl Acad Sci USA 83:8440–8441CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fringuelli F, Pani G, Piermatti O, Pizzo F (1994) Tetrahedron 50:39CrossRefGoogle Scholar
  54. 54.
    Davies JT, Rideal EK (1961) Science 134:3490Google Scholar
  55. 55.
    Mukerjee P, Banerjee K (1964) J Phys Chem 68:12CrossRefGoogle Scholar
  56. 56.
    Dharaiya N, Chavda S, Singh K, Marangoni DG, Bahadur P (2012) Spectrochim Acta A.  https://doi.org/10.1016/j.saa.2012.03.030 CrossRefGoogle Scholar
  57. 57.
    Mukhim T, Ismail K (2005) J Surf Sci Technol 21:3–4Google Scholar
  58. 58.
    Anachkov SE, Danov KD, Basheva ES, Kralchevsky PA, Ananthapadmanabhan KP (2012) Adv Colloid Interface Sci 183–184:55–67CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sen PK, Chatterjee P, Pal B (2015) J Mol Catal A 396:23–30CrossRefGoogle Scholar
  60. 60.
    Romsted LS (2014) Surfactant science and technology: retrospects and prospects. CRC Press, Boca RatonCrossRefGoogle Scholar
  61. 61.
    Kim H, Lim K (2004) Bull Korean Chem Soc 25:3Google Scholar
  62. 62.
    Cerichelli G, Cerritelli S, Chiarini M, De Maria P, Fontana A (2002) Chem Eur J 8:22CrossRefGoogle Scholar
  63. 63.
    Das PK, Pramanik R, Banerjee D, Bagchi S (2000) Spectrochim Acta A 56:2763–2773CrossRefGoogle Scholar
  64. 64.
    Fendler EJ, Fendler JH (1975) Catalysis in micellar and macromolecular systems, 1st edn. Academic Press, New YorkGoogle Scholar
  65. 65.
    Clayden J, Greeves N, Warren S (2012) Organic chemistry, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  66. 66.
    Brinchi L, Di Profio P, Micheli F, Germani R, Savelli G, Bunton CA (2001) Eur J Org Chem 2001:6CrossRefGoogle Scholar
  67. 67.
    Blaski A, Bunton GA, Foroudian HJ (1995) J Colloid Interface Sci 175:1CrossRefGoogle Scholar
  68. 68.
    Di Profio P, Germani R, Savelli G, Cerichelli G, Chiarini M, Mancini G, Bunton CA, Gillitt ND (1998) Langmuir 14(10):2662–2669CrossRefGoogle Scholar
  69. 69.
    Zarrouk A, Zarrok H, Salghi R, Hammouti B, Touzani R, Bouachrine M (2012) Int J Electrochem Sci 7:7Google Scholar
  70. 70.
    Obot IB, Kaya S, Kaya C, Tüzün B (2016) Nanostructures 80:82–90Google Scholar
  71. 71.
    Fukui K (1970) Theory of orientation and stereoselection. In: Orientation and Stereoselection. Fortschritte der Chemischen Forschung, vol 15/1. Springer, Berlin, HeidelbergGoogle Scholar
  72. 72.
    Gece G (2008) Corros Sci 50:11CrossRefGoogle Scholar
  73. 73.
    Kosar B, Albayrak C (2011) Spectrochim Acta A 78(1):160–167CrossRefGoogle Scholar
  74. 74.
    Lewis DFV, Ioannides C, Parke DV (1994) InteXenobiotica 24(5):401–408CrossRefGoogle Scholar
  75. 75.
    LoPachin RM, Gavin T, DeCaprio A, Barber DS (2013) Chem Res Toxicol 25:2Google Scholar
  76. 76.
    Kannan V, Sreekumar K, Ulahannan RT (2018) J Mol Struct 1166:315–320CrossRefGoogle Scholar
  77. 77.
    Nayak PL, Rout MK (1975) J Indian Chem Soc 52:809Google Scholar
  78. 78.
    Nayak PL, Rout MK (1970) J Indian Chem Soc 47:807Google Scholar
  79. 79.
    Tichit D, Lhouty MH, Guida A, Chiche BH, Figueras F, Auroux A, Bartalini D, Garrone E (1995) J Catal 151:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zakaria Hafidi
    • 1
  • Mohamed Ait Taleb
    • 2
    • 3
  • Abdallah Amedlous
    • 4
  • Mohammed El Achouri
    • 1
    Email author
  1. 1.Laboratoire de physico-chimie des matériaux inorganiques et organiques, Centre des Sciences des Matériaux, Ecole Normale supérieure-RabatMohammed V University in RabatRabatMorocco
  2. 2.Equipe de Matériaux, Catalyse & Valorisation des Ressources NaturellesUniversité Ibn ZohrAgadirMorocco
  3. 3.Equipe de Chimie Bio-Organique AppliquéeUniversité Ibn ZohrAgadirMorocco
  4. 4.Laboratoire de Matériaux, Catalyse et Valorisation des Ressources NaturellesURAC 24, FST Mohammadia, Université Hassan II-CasablancaCasablancaMorocco

Personalised recommendations