Advertisement

Efficient and Selective Oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran Catalyzed by Magnetic Vanadium-Based Catalysts with Air as Oxidant

  • Jinhua Lai
  • Shuolin Zhou
  • Feng Cheng
  • Dongwen Guo
  • Xianxiang LiuEmail author
  • Qiong Xu
  • Dulin YinEmail author
Article
  • 31 Downloads

Abstract

In this study, a new kind of magnetic vanadium-based catalyst was successfully prepared and employed to produce 2, 5-diformylfuran (DFF) in the liquid phase through selective oxidation of biomass-derived 5-hydroxymethylfurfur (HMF) with air as oxidant. It was found that magnetic Fe3O4 nanoparticles supported NH4·V3O8 showed excellent catalytic performance with the achievement of 95.5% HMF conversion along with 82.9% selectivity to DFF under optimal reaction conditions. More importantly, the catalyst could be readily separated from the reaction mixture by a permanent magnet, and recycled several times without the loss of its catalytic activity.

Graphic Abstract

The NH4·V3O8/Fe3O4 catalyst showed high activity for selective oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran.

Keywords

5-Hydroxymethylfurfural 2, 5-Diformylfuran Selective oxidation Magnetic catalyst Biomass transformation 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant Nos. 21606082, 21776068), Hunan Provincial Natural Science Foundation of China (2018JJ3334), the China Postdoctoral Science Foundation (2019M662787), the Opening Fund of CAS Key Laboratory of Renewable Energy (Y807kc1001), and Hunan Provincial Innovation Foundation for Postgraduate (CX2018B295).

References

  1. 1.
    Zhong RY, Sels BF (2018) Appl Catal B 236:518–545CrossRefGoogle Scholar
  2. 2.
    Chen LF, Yang WY, Gui ZY, Saravanamurugan S, Riisager A, Cao WR, Qi ZW (2019) Catal Today 319:105–112CrossRefGoogle Scholar
  3. 3.
    Liu XX, Xu Q, Liu JY, Yin DL, Su SP, Ding H (2016) Fuel 164:46–50CrossRefGoogle Scholar
  4. 4.
    Deng WP, Wang YZ, Zhang S, Gupta KM, Hülsey MJ, Asakura H, Liu LM, Han Y, Karp EM, Beckham GT, Dyson PJ, Jiang JW, Tanaka T, Wang Y, Yan N (2018) Proc Natl Acad Sci USA 115:5093–5098CrossRefGoogle Scholar
  5. 5.
    Yan Y, Li K, Zhao J, Cai W, Yang Y, Lee JM (2017) Appl Catal B 207:358–365CrossRefGoogle Scholar
  6. 6.
    Xia HA, Hu H, Xu SQ, Xiao KH, Zuo SL (2018) Biomass Bioenergy 108:426–432CrossRefGoogle Scholar
  7. 7.
    Ilkaeva M, Krivtsov I, García-López EI, Marcì G, Khainakova O, García JR, Palmisano L, Díaz E, Ordóñez S (2018) J Catal 359:212–222CrossRefGoogle Scholar
  8. 8.
    Liu XX, Ding H, Xu Q, Zhong WZ, Yin DL, Su SP (2016) J Energy Chem 25:117–121CrossRefGoogle Scholar
  9. 9.
    Amarasekara AS, Green D, Mcmillan E (2008) Catal Commun 9:286–288CrossRefGoogle Scholar
  10. 10.
    Cottier L, Descotes G, Viollet E, Lewkowski J, Skowroñski R (2010) J Heterocycl Chem 32:927–930CrossRefGoogle Scholar
  11. 11.
    El-Hajj T, Martin JC, Descotes G (1983) J Heterocycl Chem 20:233–235CrossRefGoogle Scholar
  12. 12.
    Yadav GD, Sharma RV (2014) Appl Catal B 147:293–301CrossRefGoogle Scholar
  13. 13.
    Liu B, Zhang ZH (2016) Chemsuschem 9:2015–2036CrossRefGoogle Scholar
  14. 14.
    Sajid M, Zhao X, Liu D (2018) Green Chem 20:5427–5453CrossRefGoogle Scholar
  15. 15.
    Zhu Y, Shen M, Xia Y, Lu M (2015) Catal Commun 64:37–43CrossRefGoogle Scholar
  16. 16.
    Zhu Y, Lu M (2015) RSC Adv 5:85579–85585CrossRefGoogle Scholar
  17. 17.
    Sarmah B, Satpati B, Srivastava R (2018) ACS Omega 3:7944–7954CrossRefGoogle Scholar
  18. 18.
    Sarmah B, Satpati B, Srivastava R (2018) Catal Sci Technol 8:2870–2882CrossRefGoogle Scholar
  19. 19.
    Kumar A, Srivastava R (2019) Mol Catal 465:68–79CrossRefGoogle Scholar
  20. 20.
    Sarmah B, Srivastava R (2019) Mol Catal 462:92–103CrossRefGoogle Scholar
  21. 21.
    Liu B, Zhang ZH, Lv KL, Deng KJ, Duan H (2014) Appl Catal A 472:64–71CrossRefGoogle Scholar
  22. 22.
    Tong XL, Yu LH, Chen H, Zhuang XL, Liao SY, Cui HG (2017) Catal Commun 90:91–94CrossRefGoogle Scholar
  23. 23.
    Lv GQ, Wang HL, Yang YX, Deng TS, Chen CM, Zhu YL, Hou XL (2015) ACS Catal 5:5636–5646CrossRefGoogle Scholar
  24. 24.
    Berenguer R, Fornells J, García-Mateos FJ, Guerrero-Pérez MO, Rodríguez-Mirasol J, Cordero T (2016) Catal Today 277:266–273CrossRefGoogle Scholar
  25. 25.
    Lai JH, Liu K, Zhou SL, Zhang D, Liu XX, Xu Q, Yin DL (2019) RSC Adv 9:14242–14246CrossRefGoogle Scholar
  26. 26.
    Liu XX, Xiao JF, Ding H, Zhong WZ, Xu Q, Su SP, Yin DL (2016) Chem Eng J 283:1315–1321CrossRefGoogle Scholar
  27. 27.
    He C, Sasaki T, Shimizu Y, Koshizaki N (2008) Appl Surf Sci 254:2196–2202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan ProvinceHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouPeople’s Republic of China

Personalised recommendations