Advertisement

Sustainable Hydrogen Generation by Catalytic Hydrolysis of NaBH4 Using Tailored Nanostructured Urchin-like CuCo2O4 Spinel Catalyst

  • Komal N. Patil
  • Divya Prasad
  • Jayesh T. Bhanushali
  • Hern Kim
  • Amol B. Atar
  • Bhari Mallanna NagarajaEmail author
  • Arvind H. JadhavEmail author
Article
  • 1 Downloads

Abstract

The present study describes the hydrogen production as a future energy source via hydrolysis of NaBH4 catalyzed by urchin-like CuCo2O4 spinel catalyst prepared by urea-assisted hydrothermal synthesis method. The as-synthesized copper–cobalt double hydroxide precursor and the resultant CuCo2O4 spinel were characterized by using various analytical, spectroscopic and microscopic techniques in order to understand their physiochemical and morphological aspects. The detail characterization results confirmed the successful formation of CuCo2O4 spinel phase with urchin-like morphology. The CuCo2O4 spinel catalyst was then tested for its application in hydrogen generation from NaBH4 hydrolysis by performing the reaction using 10 wt% of CuCo2O4 spinel catalyst and 0.5 g NaBH4 at room temperature. The CuCo2O4 spinel catalyst with tailored architecture displayed high catalytic activity with H2 generation rate of 1370 mL min−1 g−1 (1438 mL in 21 min). Major factors affecting the hydrolysis of NaBH4 reaction such as catalyst loading, NaOH concentration and temperature variation was also studied and discussed in detail. Correspondingly, the low activation energy of 22 kJ mol−1 was obtained from the Arrhenius plot and kinetic studies revealed that the hydrolysis of NaBH4 followed first order kinetics. Further, recyclability study of CuCo2O4 spinel catalyst was also performed which displayed good catalytic activity and stability even after five successive recycles. Characterization data of reused catalyst revealed that physiochemical properties of fresh CuCo2O4 spinel catalyst were well-preserved in the reused catalyst as well. Therefore, nanostructured CuCo2O4 spinel can be demonstrated as one of the most efficient, cost effective bimetallic spinel catalyst so far for application in the hydrogen generation.

Graphic Abstract

Keywords

CuCo2O4 spinel Urchin-like morphology Heterogeneous catalyst Hydrogen generation NaBH4 hydrolysis 

Notes

Acknowledgements

Authors would like to thank Centre for Nano and Material Sciences (CNMS), JAIN (Deemed to be University), Bangalore for funding support through the basic research grant of JAIN (No-11(39)/17/005/2017SG). The authors also acknowledge Nano Mission Project SR/NM/NS-20/2014, DST, Government of India, for providing FESEM and XRD facility.

Compliance with Ethical Standards

Conflicts of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Acar C, Dincer I (2014) Int J Hydrogen Energy 39:1–12CrossRefGoogle Scholar
  2. 2.
    Dutta S (2014) J Ind Eng Chem 20:1148–1156CrossRefGoogle Scholar
  3. 3.
    Höök M, Tang X (2013) Energy Policy 52:797–809CrossRefGoogle Scholar
  4. 4.
    Jain I (2009) Int J Hydrogen Energy 34:7368–7378CrossRefGoogle Scholar
  5. 5.
    Demirci U, Akdim O, Andrieux J, Hannauer J, Chamoun R, Miele P (2010) Fuel Cells 10:335–350CrossRefGoogle Scholar
  6. 6.
    Nabid MR, Bide Y, Dastar F (2015) Catal Lett 145:1798–1807CrossRefGoogle Scholar
  7. 7.
    Crisafulli C, Scirè S, Zito R, Bongiorno C (2012) Catal Lett 142:882–888CrossRefGoogle Scholar
  8. 8.
    Amit V, Sandesh B (2012) Int J Hydrogen Energy 37:327–334CrossRefGoogle Scholar
  9. 9.
    Huff C, Long JM, Heyman A, Abdel-Fattah TM (2018) ACS Appl Energy Mater 1:4635–4640CrossRefGoogle Scholar
  10. 10.
    Brack P, Dann SE, Wijayantha KGU (2015) Energy Sci Eng 3:174–188CrossRefGoogle Scholar
  11. 11.
    Wei L, Ma M, Wang D, Wang Q, Lu Y, Zhang S (2018) Funct Mater Lett 11:1850079CrossRefGoogle Scholar
  12. 12.
    Bullock RM (2017) Chemistry 2:444–446CrossRefGoogle Scholar
  13. 13.
    Ingersoll JC, Mani N, Thenmozhiyal JC, Muthaiah A (2007) J Power Sources 173:450–457CrossRefGoogle Scholar
  14. 14.
    Loghmani MH, Shojaei AF, Khakzad M (2017) Energy 126:830–840CrossRefGoogle Scholar
  15. 15.
    Liu C-H, Chen B-H, Hsueh C-L, Ku J-R, Jeng M-S, Tsau F (2009) Int J Hydrogen Energy 34:2153–2163CrossRefGoogle Scholar
  16. 16.
    Rakap M, Kalu EE, Özkar S (2011) J Alloy Compd 509:7016–7021CrossRefGoogle Scholar
  17. 17.
    Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Int J Hydrogen Energy 39:15627–15638CrossRefGoogle Scholar
  18. 18.
    Reddy MV, Yu C, Jiahuan F, Loh KP, Chowdari BVR (2012) RSC Adv 2:9619CrossRefGoogle Scholar
  19. 19.
    Jadhav HS, Pawar SM, Jadhav AH, Thorat GM, Seo JG (2016) Sci Rep 6:31120CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Prasad D, Patil KN, Sandhya N, Chaitra C, Bhanushali JT, Samal AK, Keri RS, Jadhav AH, Nagaraja BM (2019) Appl Surf Sci 489:538–551CrossRefGoogle Scholar
  21. 21.
    Prasad D, Patil KN, Chaitra C, Sandhya N, Bhanushali JT, Gosavi SW, Jadhav AH, Nagaraja BM (2019) Appl Surf Sci 488:714–727CrossRefGoogle Scholar
  22. 22.
    Lei Y, Li J, Wang Y, Gu L, Chang Y, Yuan H, Xiao D (2014) ACS Appl Mater Interfaces 6:1773–1780CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vijayakumar S, Lee S-H, Ryu K-S (2015) Electrochim Acta 182:979–986CrossRefGoogle Scholar
  24. 24.
    Liu H, Jiao Q, Zhao Y, Li H, Sun C, Li X (2010) J Alloy Compd 496:317–323CrossRefGoogle Scholar
  25. 25.
    Meher SK, Rao GR (2013) J Phys Chem C 117:4888–4900CrossRefGoogle Scholar
  26. 26.
    Meher SK, Justin P, Ranga RG (2011) ACS Appl Mater Interfaces 3:2063–2073CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liu J, Li K, Wang H, Zhu M, Xu H, Yan H (2004) Nanotechnology 16:82CrossRefGoogle Scholar
  28. 28.
    Liao L, Zhang H, Li W, Huang X, Xiao Z, Xu K, Yang J, Zou R, Hu J (2017) J Alloy Compd 695:3503–3510CrossRefGoogle Scholar
  29. 29.
    Zhong S, Zheng T, Qi B, Miao D, Willis F (2008) J Colloid Interface Sci 319:247–251CrossRefGoogle Scholar
  30. 30.
    Gaber A, Abdel-Rahim MA, Abdel-Latief AY, Abdel-Salam MN (2014) J Electrochem Sci 9:81–95Google Scholar
  31. 31.
    Rey F, Fornea V, Jose M (1992) J Chem Soc Faraday Transactions 88:2233–2238CrossRefGoogle Scholar
  32. 32.
    Pagano JJ, Thouvenel-Romans S, Steinbock O (2007) Phys Chem Chem Phys 9:110–116CrossRefGoogle Scholar
  33. 33.
    Yang J, Liu H, Martens WN, Frost RL (2009) J Phys Chem C 114:111–119CrossRefGoogle Scholar
  34. 34.
    Padmanathan N, Selladurai S (2014) Ionics 20:479–487CrossRefGoogle Scholar
  35. 35.
    Na CW, Woo H-S, Kim H-J, Jeong U, Chung J-H, Lee J-H (2012) Cryst Eng Commun 14:3737–3741CrossRefGoogle Scholar
  36. 36.
    Liu S, Hui K, Hui K (2016) ACS Appl Mater Interfaces 8:3258–3267CrossRefGoogle Scholar
  37. 37.
    Das AK, Kim NH, Lee SH, Sohn Y, Lee JH (2018) Compos B Eng 150:269–276CrossRefGoogle Scholar
  38. 38.
    Liao J, Feng Y, Wu S, Ye H, Zhang J, Zhang X, Xie F, Li H (2019) Nanomaterials 9:360CrossRefGoogle Scholar
  39. 39.
    Zakaria ZY, Linnekoski J, Amin N (2012) Chem Eng J 207:803–813CrossRefGoogle Scholar
  40. 40.
    Mo S, Li S, Li J, Deng Y, Peng S, Chen J, Chen Y (2016) Nanoscale 8:15763–15773CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ramanathan R, Sugunan S (2006) Doctoral dissertation, University of Science and Technology KochiGoogle Scholar
  42. 42.
    Appaturi JN, Adam F (2013) Appl Catal B 136–137:150–159CrossRefGoogle Scholar
  43. 43.
    Liu Q, Zhang S, Liao J, Feng K, Zheng Y, Pollet BG, Li H (2017) J Power Sources 355:9CrossRefGoogle Scholar
  44. 44.
    Liu B, Rose A, Zhang N, Hu Y, Ma M (2017) J Phys Chem C 121:2610–12616CrossRefGoogle Scholar
  45. 45.
    Liu M, Liang L, Liang T, Lin X, Shi L, Wang F, Sun J (2015) J Mol Catal A Chem 408:242–249CrossRefGoogle Scholar
  46. 46.
    Şahin Ö, Kilinc D, Saka C (2015) Sep Sci Technol 50:2051–2059Google Scholar
  47. 47.
    Ma M, Wei L, Jin F (2019) Funct Mater Lett 12:1850109CrossRefGoogle Scholar
  48. 48.
    Wu Z, Ge S (2011) Catal Commun 13:40–43CrossRefGoogle Scholar
  49. 49.
    Liu Z, Guo B, Chan SH, Tang EH, Hong L (2008) J Power Sources 176:306–311CrossRefGoogle Scholar
  50. 50.
    Li T, Chen ZX, Cao YL, Ai XP, Yang HX (2012) Electrochim Acta 68:202–205CrossRefGoogle Scholar
  51. 51.
    Jadhav AR, Bandal HA, Kim H (2017) Mater Lett 198:50–53CrossRefGoogle Scholar
  52. 52.
    Ding X-L, Yuan X, Jia C, Ma Z-F (2010) Int J Hydrogen Energy 35:11077–11084CrossRefGoogle Scholar
  53. 53.
    Nie M, Zou Y, Huang Y, Wang J (2012) Int J Hydrogen Energy 37:1568–1576CrossRefGoogle Scholar
  54. 54.
    Patel N, Fernandes R, Miotello A (2010) J Catal 271:315–324CrossRefGoogle Scholar
  55. 55.
    Saka C, Şahin Ö, Demir H, Karabulut A, Sarikaya A (2015) Energy Sources Part A 37:956–964CrossRefGoogle Scholar
  56. 56.
    Lan D, Qin M, Yang R, Chen S, Wu H, Fan Y, Fu Q, Zhang F (2019) J Colloid Interface Sci 533:481–491CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Loghmani MH, Shojaei AF (2013) Int J Hydrogen Energy 38:10470–10478CrossRefGoogle Scholar
  58. 58.
    Hsueh C-L, Chen C-Y, Ku J-R, Tsai S-F, Hsu Y-Y, Tsau F, Jeng M-S (2008) J Power Sources 177:485–492CrossRefGoogle Scholar
  59. 59.
    Liu C-H, Chen B-H, Hsueh C-L, Ku J-R, Tsau F, Hwang K-J (2009) Appl Catal B 91:368–379CrossRefGoogle Scholar
  60. 60.
    Zhao Y, Ning Z, Tian J, Wang H, Liang X, Nie S, Yu Y, Li X (2012) J Power Sources 207:120–126CrossRefGoogle Scholar
  61. 61.
    Wei L, Dong X, Ma M, Lu Y, Wang D, Zhang S, Zhao D, Wang Q (2018) Int J Hydrogen Energy 43:1529–1533CrossRefGoogle Scholar
  62. 62.
    Huang Y, Wang K, Cui L, Zhu W, Asiri AM, Sun X (2016) Catal Commun 87:94–97CrossRefGoogle Scholar
  63. 63.
    Bandal HA, Jadhav AR, Kim H (2017) J Alloy Compd 699:1057–1067CrossRefGoogle Scholar
  64. 64.
    Aman D, Alkahlawy AA, Zaki T (2018) Int J 39:18289–18295Google Scholar
  65. 65.
    Jadhav AH, Chinnappan A, Hiremath V, Seo JG (2015) J Nanosci Nanotechnol 15:8243–8250CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Jadhav AH, Mai XT, Appiah-Ntiamoah R, Lee H, Momade FW, Seeo JG, Kim H (2015) J Nanosci Nanotechnol 10:7980–7987CrossRefGoogle Scholar
  67. 67.
    Jadhav AH, Prasad D, Jadhav HS, Nagaraja BM, Seo JG (2018) Energy 160:635–647CrossRefGoogle Scholar
  68. 68.
    Jadhav AH, Kim H, Hwang IT (2013) Biores Technol 132:342–350CrossRefGoogle Scholar
  69. 69.
    Prasad D, Patil KN, Sandhya N, Chaitra CR, Bhanushali JT, Samal AK, Keri RS, Jadhav AH, Nagaraja BM (2019) Appl Surf Sci 489:538–551CrossRefGoogle Scholar
  70. 70.
    Prasad D, Patil KN, Bhanushali JT, Nagaraja BM, Jadhav AH (2019) Catal Sci Technol 9:4393–4412CrossRefGoogle Scholar
  71. 71.
    Bhanushali JT, Prasad D, Patil KN, Babu GV, Kainthla I, Kamaraju SR, Jadhav AH, Nagaraja BM (2019) New J Chem 43:11968–11983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Komal N. Patil
    • 1
  • Divya Prasad
    • 1
  • Jayesh T. Bhanushali
    • 1
  • Hern Kim
    • 2
  • Amol B. Atar
    • 3
  • Bhari Mallanna Nagaraja
    • 1
    Email author
  • Arvind H. Jadhav
    • 1
    Email author
  1. 1.Centre for Nano and Material ScienceJain UniversityBangaloreIndia
  2. 2.Department of Energy Science and Technology, Smart Living Innovation Technology CenterMyongji UniversityYonginRepublic of Korea
  3. 3.Department of ChemistrySejong UniversitySeoulRepublic of Korea

Personalised recommendations