Advertisement

Production of Levulinic Acid via Cellulose Conversion Over Metal Oxide-Loaded MOF Catalysts in Aqueous Medium

  • Kaifeng Wang
  • Ya Liu
  • Wufeng Wu
  • Yu ChenEmail author
  • Lina Fang
  • Wanbin LiEmail author
  • Hongbing Ji
Article
  • 16 Downloads

Abstract

In this study, Zr-MOF material (UiO-66) was modified with different metal oxides (CeO2, Ga2O3, and CoO) and employed in the conversion of cellulose to levulinic acid (LA) in aqueous medium. The research results showed that the introduction of the metal oxides increased the acid content of the catalysts, especially in medium-strong acid. The selectivity of LA was related to the type of metal oxide and the content of medium-strong acid. Due to the activity of Ga2O3 and more medium-strong acid, the yield of LA reaches a maximum yield of 32.0 mol% at 513 K for 360 min when Ga2O3-UiO-66 was employed as the catalysts. The combination of metal oxide and UiO-66 enables the reaction to proceed, providing a new direction for the conversion of cellulose to LA in the aqueous phase.

Graphic Abstract

In this study, Zr-MOFs material (UiO-66) was modified with different metal oxides (CeO2, Ga2O3, and CoO) and employed in the conversion of cellulose to levulinic acid in aqueous medium. The results indicated that the addition of metal oxides changes the acidity of UiO-66, which improves the catalytic activity. The selectivity of LA was related to the type of metal oxide and the content of medium-strong acid.

Keywords

Cellulose Levulinic acid Catalytic conversion Metal oxide-loaded MOFs catalyst Aqueous medium 

Notes

Acknowledgements

This study was supported financially by National Natural Science Foundation of China (No. 51708252), “the Fundamental Research Funds for the Central Universities” (No. 17lgpy71), National Science for Distinguished Young Scholars of China (No. 21425627), Guangdong Technology Research Center for Synthesis and Separation of Thermosensitive Chemicals (2015B090903061), and Science and Technology Innovation Teams Project of Huizhou (20131226121851953).

Supplementary material

10562_2019_3023_MOESM1_ESM.doc (9.5 mb)
Supplementary material 1 (DOC 9707 kb)

References

  1. 1.
    Lund H, Afgan H, Bogdan Z, Duić N, Guzović Z (2007) Energy 32:912–919CrossRefGoogle Scholar
  2. 2.
    Balat M, Balat H (2010) Appl Energy 87:1815–1835CrossRefGoogle Scholar
  3. 3.
    Vispute TP, Zhang H, Sanna A, Xiao R, Huber H (2010) Science 330:1222–1227CrossRefGoogle Scholar
  4. 4.
    Kobayashi H, Ohta H, Fukuoka A (2012) Catal Sci Technol 2:869–883CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Huber GW (2018) Chem Soc Rev 47:1351–1390CrossRefGoogle Scholar
  6. 6.
    Lin H, Strull J, Liu Y, Karmiol Z, Plank K, Miller G, Guo Z, Yang L (2012) Energy Environ Sci 5:9773CrossRefGoogle Scholar
  7. 7.
    Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Resour Conserv Recycl 28:227–239CrossRefGoogle Scholar
  8. 8.
    Fernandes DR, Rocha AS, Mai EF, Mota CJA, Silva VTD (2012) Appl Catal A 425–426:199–204CrossRefGoogle Scholar
  9. 9.
    Serrano-Ruiz JC, Pineda A, Balu AM, Luque R, Campelo JM, Romero AA, Ramos-Fernández JM (2012) Catal Today 195:162–168CrossRefGoogle Scholar
  10. 10.
    Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T (2006) Combust Sci Technol 178:509–536CrossRefGoogle Scholar
  11. 11.
    Li Y-X, Wei Z-Y, Liu L, Gao M-L, Han Z-B (2018) Inorg Chem Commun 88:47–50CrossRefGoogle Scholar
  12. 12.
    Weingarten R, Conner WC, Huber GW (2012) Energy Environ Sci 5:7559CrossRefGoogle Scholar
  13. 13.
    Shen J, Wyman CE (2012) AIChE J 58:236–246CrossRefGoogle Scholar
  14. 14.
    Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Molecules 15:5258–5272CrossRefGoogle Scholar
  15. 15.
    Chiappe C, Douton MJR, Mezzetta A, Guazzelli L, Pomelli CS, Angelis AD, Assanelli G (2017) New J Chem 42(3):1845–1852CrossRefGoogle Scholar
  16. 16.
    Wang P, Zhan SH, Yu HB (2010) Adv Mater Res 96:183–187CrossRefGoogle Scholar
  17. 17.
    Xiang M, Liu J, Fu W, Tang T, Wu D (2017) ACS Sustain Chem Eng 5:5800–5809CrossRefGoogle Scholar
  18. 18.
    Akiyama G, Matsuda R, Sato H, Takata M, Kitagawa S (2011) Adv Mater 23:3294–3297CrossRefGoogle Scholar
  19. 19.
    Herbst A, Janiak C (2016) New J Chem 40:7958–7967CrossRefGoogle Scholar
  20. 20.
    Su Y, Chang G, Zhang Z, Xing H, Su B, Yang Q, Ren Q, Yang Y, Bao Z (2016) AIChE J 62:4403–4417CrossRefGoogle Scholar
  21. 21.
    Gong J, Katz MJ, Kerton FM (2018) RSC Adv 8:31618–31627CrossRefGoogle Scholar
  22. 22.
    Zhang H, Nai J, Yu L, Lou XW (2017) Joule 1:77–107CrossRefGoogle Scholar
  23. 23.
    Herbst A, Janiak C (2017) CrystEngComm 19:4092–4117CrossRefGoogle Scholar
  24. 24.
    Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) Chem Commun 49:9449–9451CrossRefGoogle Scholar
  25. 25.
    Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Chem Mater 22:6632–6640CrossRefGoogle Scholar
  26. 26.
    Sadeghi S, Jafarzadeh M, Reza Abbasi A, Daasbjerg K (2017) New J Chem 41:12014–12027CrossRefGoogle Scholar
  27. 27.
    Insyani R, Verma D, Kim SM, Kim J (2017) Green Chem 19:2482–2490CrossRefGoogle Scholar
  28. 28.
    Dong W, Feng C, Zhang L, Shang N, Gao S, Wang C, Wang Z (2015) Catal Lett 146:117–125CrossRefGoogle Scholar
  29. 29.
    Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M (2018) Appl Catal B 230:18–28CrossRefGoogle Scholar
  30. 30.
    Zheng J, Lei Z (2018) Appl Catal B 237:1–8CrossRefGoogle Scholar
  31. 31.
    Zeng W, Cheng DG, Zhang H, Chen F, Zhan X (2010) React Kinet Mech Catal 100:377–384Google Scholar
  32. 32.
    Jin F, Zhou Z, Enomoto H, Moriya T, Higashijima H (2004) Chem Lett 33:126–127CrossRefGoogle Scholar
  33. 33.
    Wattanapaphawong P, Reubroycharoen P, Yamaguchi A (2017) RSC Adv 7:18561–18568CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of FoodShihezi UniversityShiheziChina
  2. 2.Huizhou Research Institute, Sun Yat-sen UniversityHuizhouChina
  3. 3.School of EnvironmentJinan UniversityGuangzhouChina
  4. 4.School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and HealthJinan UniversityGuangzhouPeople’s Republic of China
  5. 5.School of Chemistry and Environmental EngineeringHanshan Normal UniversityChaozhouPeople’s Republic of China

Personalised recommendations