Advertisement

Ga-Doped AgInS2 Modified with Co–Pi Co–catalyst for Efficient Photoelectrochemical Water Splitting

  • Qijun Cai
  • Zhifeng LiuEmail author
  • Junwei Li
  • Changcun Han
  • Zhengfu Tong
Article
  • 11 Downloads

Abstract

In this work, AgInS2 photoelectrodes doped with Ga element and deposited Co–Pi co–catalyst have been prepared on FTO substrates by hydrothermal and electrochemical deposition methods. In photoelectrochemical (PEC) measurements, the photocurrent density of AgInS2/Ga5%/Co–Pi photoelectrodes (2.18 mA/cm2 at 1.2 V vs. RHE) is about 3.25 times higher than that of pure AgInS2 photoelectrodes (0.67 mA/cm2 at 1.2 V vs. RHE). The enhanced PEC performance could be ascribed to the improved light absorption by doping Ga element and fast charge separation by depositing Co–Pi co–catalyst. This work highlights that doping appropriate metal element and loading co-catalyst to synergistically modify photoelectrodes are practicable approach for PEC water splitting.

Graphic Abstract

Keywords

AgInS2 Doping Co–Pi Co–catalyst Photoelectrochemical water splitting 

Notes

Acknowledgements

This work was financially supported by Open Foundation of Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy (No. HBSKFZD2017001), the National Science Foundation of China (Grant No. 51702092), Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB282) and Science Foundation of Hubei University of Technology (Grant No. BSQD2017065).

Supplementary material

10562_2019_3021_MOESM1_ESM.doc (91 kb)
Supplementary material 1 (DOC 91 kb)

References

  1. 1.
    Ouyang T, Ye YQ, Wu CY, Xiao K, Liu ZQ (2019) Heterostructures composed of N-doped carbon nanotubes encapsulating Co and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew Chem Int Ed 58:4923–4928CrossRefGoogle Scholar
  2. 2.
    Wu XF, Sun YY, Li H, Wang YJ, Zhang CX, Zhang JR, Su JZ, Wang YW, Zhang Y, Wang C (2018) In-situ synthesis of novel p-n heterojunction of Ag2CrO4-Bi2Sn2O7 hybrids for visible-light-driven photocatalysis. J Alloys Compd 740:1197–1203CrossRefGoogle Scholar
  3. 3.
    Rao F, Zhu G, Hojamberdiev M, Zhang W, Li S, Gao J, Zhang F, Huang Y, Huang Y (2019) Uniform Zn2+-doped BiOI microspheres assembled by ultrathin nanosheets with tunable oxygen vacancies for super-stable removal of NO. J Phys Chem C 123:16268–16280CrossRefGoogle Scholar
  4. 4.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  5. 5.
    Lan YY, Liu ZF, Guo ZG, Li XF, Zhao L, Zhan L, Zhang M (2018) A ZnO/ZnFe2O4 uniform core-shell heterojunction with a tubular structure modified by NiOOH for efficient photoelectrochemical water splitting. Dalton Trans 47:12181–12187PubMedCrossRefGoogle Scholar
  6. 6.
    Ma CH, Liu ZF, Cai QJ, Han CC, Tong ZF (2018) ZnO photoelectrode simultaneous modified with Cu2O and Co-Pi based on broaden light absorption and efficient photogenerated carrier separation. Inorg Chem Front 5:2571–2578CrossRefGoogle Scholar
  7. 7.
    Chen D, Liu ZF (2018) Dual axial gradient-doping (Zr and Sn) on hematite for promoting charge separation in photoelectrochemical water splitting. Chemsuschem 11:3438–3448PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Li YT, Liu ZF, Zhang J, Guo ZG, Xin Y, Zhao L (2019) 1D/0D WO3/CdS heterojunction photoanodes modified with dual co-catalysts for efficient photoelectrochemical water splitting. J Alloys Compd 790:493–501CrossRefGoogle Scholar
  9. 9.
    Zhou SQ, Yue PF, Huang JW, Wang L, She HD, Wang QZ (2019) High-performance photoelectrochemical water splitting of BiVO4@Co-MIm prepared by a facile in situ deposition method. Chem Eng J 371:885–892CrossRefGoogle Scholar
  10. 10.
    Qiu Y, Liu W, Chen W, Chen W, Zhou G, Hsu PC, Zhang R, Liang Z, Fan S, Zhang Y, Cui Y (2016) Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci Adv 2:e1501764PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Li Y, Li Z, Ye W, Zhao S, Yang Q, Ma S, Yue Z (2019) Gold nanorods and graphene oxide enhanced BSA-AgInS2 quantum dot-based photoelectrochemical sensors for detection of dopamine. Electrochim Acta 295:1006–1016CrossRefGoogle Scholar
  12. 12.
    Liu ZF, Song QG, Zhou M, Guo ZG, Kang JH, Yan HY (2019) Synergistic enhancement of charge management and surface reaction kinetics by spatially separated cocatalysts and p-n heterojunctions in Pt/CuWO4/Co3O4 photoanode. Chem Eng J 374:554–563CrossRefGoogle Scholar
  13. 13.
    Zhou M, Guo ZG, Song QG, Li XF, Liu ZF (2019) Improved photoelectrochemical response of CuWO4/BiOI p-n heterojunction embedded with plasmonic Ag nanoparticles. Chem Eng J 370:218–277CrossRefGoogle Scholar
  14. 14.
    Chen D, Liu ZF, Guo ZG, Yan WG, Xin Y (2018) Enhancing light harvesting and charge separation of Cu2O photocathodes with spatially separated noble-metal cocatalysts towards highly efficient water splitting. J Mater Chem A 6:20393–20401CrossRefGoogle Scholar
  15. 15.
    Sun JL, Li L, Kong QK, Zhang Y, Zhao PN, Ge SG, Cui K, Yu JH (2019) Mimic peroxidase-transfer enhancement of photoelectrochemical aptasensing via CuO nanoflowers functionalized lab-on-paper device with a controllable fluid separator. Biosens Bioelectron 133:32–38PubMedCrossRefGoogle Scholar
  16. 16.
    Cai QJ, Liu ZF, Han CC, Tong ZF, Ma CH (2019) CuInS2/Sb2S3 heterostructure modified with noble metal co-catalyst for efficient photoelectrochemical water splitting. J Alloys Compd 795:319–326CrossRefGoogle Scholar
  17. 17.
    Liu ZF, Lu X, Chen D (2018) Photoelectrochemical water splitting of CuInS2 photocathode collaborative modified with separated catalysts based on efficient photogenerated electron-hole separation. ACS Sustain Chem Eng 6:10289–10294CrossRefGoogle Scholar
  18. 18.
    Zhang MM, Li XY, Zhao QD, Fan SY, Jiang Z, Chen GH (2017) AgInS2 nanoparticles modified TiO2 nanotube array electrodes: ultrasonic-assisted SILAR preparation and mechanism of enhanced photoelectrocatalytic activity. Mol Catal 442:97–106CrossRefGoogle Scholar
  19. 19.
    Mandati S, Sarada BV, Dey SR, Joshi SV (2018) Pulsed electrochemical deposition of CuInSe2 and Cu(In, Ga)Se2 semiconductor thin films. Semicond Growth Charact 6:109–132Google Scholar
  20. 20.
    Torimoto T, Kamiya Y, Kameyama T, Nishi H, Uematsu T, Kuwabata S, Shibayama T (2016) Controlling shape anisotropy of ZnS-AgInS2 solid solution nanoparticles for improving photocatalytic activity. ACS Appl Mater and Interfaces 8:27151–27161CrossRefGoogle Scholar
  21. 21.
    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Chen L (2018) Intrinsically high thermoelectric performance in AgInSe2 n-type diamond-like compounds. Adv Sci 5:1700727–1700734CrossRefGoogle Scholar
  22. 22.
    Frick JJ, Topp A, Klemenz S, Krivenkov M, Varykhalov A, Ast CR, Schoop LM (2018) Single-crystal growth and characterization of the chalcopyrite semiconductor CuInTe2 for photoelectrochemical solar fuel production. J Phys Chem Lett 9:6833–6840PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Chen C, Zhai Y, Li F, Tan F, Yue G, Zhang W, Wang M (2017) High efficiency CH3NH3PbI3: CdS perovskite solar cells with CuInS2 as the hole transporting layer. J Power Sources 341:396–403CrossRefGoogle Scholar
  24. 24.
    Li J, Lin X, Zhang Z, Tu W, Dai Z (2019) Red light-driven photoelectrochemical biosensing for ultrasensitive and scatheless assay of tumor cells based on hypotoxic AgInS2 nanoparticles. Biosens Bioelectron 126:332–338PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Deng F, Lu X, Luo Y, Wang J, Che W, Yang R, Dionysiou DD (2019) Novel visible-light-driven direct Z-scheme CdS/CuInS2 nanoplates for excellent photocatalytic degradation performance and highly-efficient Cr(VI) reduction. Chem Eng J 361:1451–1461CrossRefGoogle Scholar
  26. 26.
    Wang CH, Cheng KW, Tseng CJ (2011) Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition. Sol Energy Mater Sol Cells 95:453–461CrossRefGoogle Scholar
  27. 27.
    Wang X, Zhang H, Lin H, Gupta S, Wang C, Tao Z, Li X (2016) Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-NC catalysts for oxygen reduction in acid. Nano Energy 25:110–119CrossRefGoogle Scholar
  28. 28.
    Liu T, Asiri AM, Sun X (2016) Electrodeposited Co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale 8:3911–3915PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cui Z, Ge Y, Chu H, Baines R, Dong P, Tang J, Shen J (2017) Controlled synthesis of Mo-doped Ni3S2 nano-rods: an efficient and stable electro-catalyst for water splitting. J Mater Chem A 5:1595–1602CrossRefGoogle Scholar
  30. 30.
    Lim J, Shin H, Kim M, Lee H, Lee KS, Kwon Y, Cho E (2018) Ga-doped Pt-Ni octahedral nanoparticles as a highly active and durable electrocatalyst for oxygen reduction reaction. Nano Lett 18:2450–2458PubMedCrossRefGoogle Scholar
  31. 31.
    Song H, Li Y, Lou Z, Xiao M, Hu L, Ye Z, Zhu L (2015) Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl Catal B 166:112–120CrossRefGoogle Scholar
  32. 32.
    Chang L, Zhu G, Hassan QU, Cao B, Li S, Jia Y, Gao J, Zhang F, Wang Q (2019) Synergetic effects of Pd0 metal nanoparticles and Pd2+ ions on enhanced photocatalytic activity of ZnWO4 nanorods for nitric oxide removal. Langmuir 35:11265–11274PubMedCrossRefGoogle Scholar
  33. 33.
    Qiu Y, Pan Z, Chen H, Ye D, Guo L, Fan Z, Yang S (2019) Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci Bull 64:1348–1380CrossRefGoogle Scholar
  34. 34.
    Ikeda S, Nonogaki M, Septina W, Gunawan G, Harada T, Matsumura M (2013) Fabrication of CuInS2 and Cu(InGa)S2 thin films by a facile spray pyrolysis and their photovoltaic and photoelectrochemical properties. Catal Sci Technol 3:1849–1854CrossRefGoogle Scholar
  35. 35.
    Shinde SS, Shinde PS, Oh YW, Haranath D, Bhosale CH, Rajpure KY (2012) Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films. Appl Surf Sci 258:9969–9976CrossRefGoogle Scholar
  36. 36.
    Zhang L, Qu J, Yu T, Chen Y, Pang W, Qu M, Yan H (2018) Control of the structure and photoelectrical properties of Cu(InGa)Se2 film by Ga deposition potential in two-step electrodeposition. J Mater Sci: Mater Electron 29:20104–20112Google Scholar
  37. 37.
    Subramanian A, Annamalai A, Lee HH, Choi SH, Ryu J, Park JH, Jang JS (2016) Trade-off between Zr passivation and Sn doping on hematite nanorod photoanodes for efficient solar water oxidation: effects of a ZrO2 underlayer and FTO deformation. ACS Appl Mater Interfaces 8:19428–19437PubMedCrossRefGoogle Scholar
  38. 38.
    Carroll GM, Gamelin DR (2016) Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe2O3 photoanodes. J Mater Chem A 4:2986–2994CrossRefGoogle Scholar
  39. 39.
    An X, Hu C, Lan H, Liu H, Qu J (2018) Strongly coupled metal oxide/reassembled carbon nitride/Co–Piheterostructures for efficient photoelectrochemical water splitting. ACS Appl Mater Interfaces 10:6424–6432PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zhou M, Liu Z, Song Q, Song Q, Li X, Chen B, Liu Z (2019) Hybrid 0D/2D edamame shaped ZnIn2S4 photoanode modified by Co–Piand Pt for charge management towards efficient photoelectrochemical water splitting. Appl Catal B 244:188–196CrossRefGoogle Scholar
  41. 41.
    Gao M, Yang J, Sun T, Zhang Z, Zhang D, Huang H, Wang X (2019) Persian buttercup-like BiOBrxCl1-x solid solution for photocatalytic overall CO2 reduction to CO and O2. Appl Catal B 243:734–740CrossRefGoogle Scholar
  42. 42.
    Shao Z, Zeng T, He Y, Zhang D, Pu X (2019) A novel magnetically separable CoFe2O4/Cd0.9Zn0.1S photocatalyst with remarkably enhanced H2 evolution activity under visible light irradiation. Chem Eng J 359:485–495CrossRefGoogle Scholar
  43. 43.
    Zhu G, Li S, Gao J, Zhang F, Liu C, Wang Q, Hojamberdiev M (2019) Constructing a 2D/2D Bi2O2CO3/Bi4O5B2 heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic activity for NOx removal. Appl Surf Sci 493:913–925CrossRefGoogle Scholar
  44. 44.
    Lugo S, Pena Y, Calixto-Rodriguez M, López-Mata C, Ramón ML, Gómez I, Acosta A (2012) Chemically deposited In2S3-Ag2S layers to obtain AgInS2 thin films by thermal annealing. Appl Surf Sci 263:440–444CrossRefGoogle Scholar
  45. 45.
    Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4. J Am Chem Soci 133:18370–18377CrossRefGoogle Scholar
  46. 46.
    Ma Y, Kafizas A, Pendlebury SR, Formal FL, Durrant JR (2016) Photoinduced absorption spectroscopy of CoPi on BiVO4: the function of CoPi during water oxidation. Adv Funct Mater 26:4951–4960CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qijun Cai
    • 1
  • Zhifeng Liu
    • 1
    Email author
  • Junwei Li
    • 1
    • 2
  • Changcun Han
    • 1
  • Zhengfu Tong
    • 1
  1. 1.School of Science & Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of TechnologyWuhanChina
  2. 2.Collaborative Innovation Center of Green Light-Weight Materials and ProcessingHubei University of TechnologyWuhanChina

Personalised recommendations