Advertisement

Pr-doped Modified Fe–Mn/TiO2 Catalysts with a High Activity and SO2 Tolerance for NH3-SCR at Low-Temperature

  • Xinxin Hou
  • Hongping ChenEmail author
  • Yinghua LiangEmail author
  • Xu Yang
  • Yonglin Wei
Article
  • 13 Downloads

Abstract

Pr-modified Fe–Mn/TiO2 (x Pr) catalysts with high activity and excellent SO2 resistance were prepared and used for the selective catalytic reduction of NO with NH3 (NH3-SCR) at low-temperatures. Pr can inhibit FeOx and MnOx crystallization and stabilize the high valence states of Fe and Mn, maintaining the catalyst’s high activity and stability at low temperatures. Doping with Pr diminished the ammonium sulfate deposition and alleviated the sulfation, improving the catalysts’ sulfur resistance.

Graphic Abstract

Keywords

Fe–Mn/TiO2 catalyst NH3-SCR Low temperature Pr modification SO2 resistance 

Notes

Acknowledgements

This work was supported by Foundation of Hebei (in China) Education Department (ZD2015116) and Foundation of Hebei Province of China (B2017209111).

Compliance with Ethical Standards

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

  1. 1.
    Fu M, Li C, Lu P et al (2013) Catal Sci Technol 4(1):14CrossRefGoogle Scholar
  2. 2.
    Liang Z, Ma X, Lin H et al (2011) Appl Energy 8(4):1120CrossRefGoogle Scholar
  3. 3.
    Sun D, Liu Q, Liu Z et al (2009) Catal Lett 132(1–2):122CrossRefGoogle Scholar
  4. 4.
    Zhou C, Zhang L, Deng Y et al (2016) Environ Prog Sustain 35(6):1664CrossRefGoogle Scholar
  5. 5.
    Jiang H, Jing Z, Jiang D et al (2014) Catal Lett 144(2):325CrossRefGoogle Scholar
  6. 6.
    Pan S, Luo H, Li L et al (2013) J Mol Catal A 377:154CrossRefGoogle Scholar
  7. 7.
    Zhang L, Qu H, Du T et al (2016) Chem Eng J 296(15):122CrossRefGoogle Scholar
  8. 8.
    Li S, Huang B, Yu C (2017) Catal Commun 98(10):47CrossRefGoogle Scholar
  9. 9.
    Wei L, Cui S, Guo H et al (2016) J Mol Catal A 421:102CrossRefGoogle Scholar
  10. 10.
    Thirupathi B, Smirniotis PG (2011) Appl Catal B 110:195CrossRefGoogle Scholar
  11. 11.
    Putluru SSR, Schill L, Jensen AD et al (2015) Appl Catal B 165:628CrossRefGoogle Scholar
  12. 12.
    Chen H, Qi X, Liang Y et al (2019) React Kinet Mech Catal 126(1):327CrossRefGoogle Scholar
  13. 13.
    Wu Z, Jin R, Wang H et al (2009) Catal Commun 10(6):935CrossRefGoogle Scholar
  14. 14.
    Wu Z, Jin R, Liu Y et al (2008) Catal Commun 9(13):2217CrossRefGoogle Scholar
  15. 15.
    Yu C, Huang B, Dong L et al (2017) Chem Eng J 316:1059CrossRefGoogle Scholar
  16. 16.
    Tang C, Zhang H, Dong L (2016) Catal Sci Technol 6(5):1248CrossRefGoogle Scholar
  17. 17.
    Liu J, Guo R, Li M et al (2018) Fuel 223:385CrossRefGoogle Scholar
  18. 18.
    Zhu Y, Zhang Y, Xiao R et al (2017) Catal Commun 88:64CrossRefGoogle Scholar
  19. 19.
    Meng D, Zhan W, Guo Y et al (2017) ACS Catal 5(10):272Google Scholar
  20. 20.
    Fan Z, Shi J, Gao C et al (2018) Chem Eng J 348:820CrossRefGoogle Scholar
  21. 21.
    Chao J, He H, Song L et al (2015) Chem J Chin U 36(3):523Google Scholar
  22. 22.
    Kwon DW, Nam KB, Hong SC (2015) Appl Catal B 166–167:37CrossRefGoogle Scholar
  23. 23.
    France LJ, Yang Q, Li W et al (2017) Appl Catal B 206:203CrossRefGoogle Scholar
  24. 24.
    Jin Q, Shen Y, Zhu S et al (2016) J Rare Earths 34:1111CrossRefGoogle Scholar
  25. 25.
    Pengpanich S, Meeyoo V, Rirksomboon T et al (2002) Appl Catal A 234(1–2):221CrossRefGoogle Scholar
  26. 26.
    Wang M, Si Z, Chen L et al (2013) J Rare Earths 31(12):1148CrossRefGoogle Scholar
  27. 27.
    Wang T, Wan Z, Yang X et al (2018) Technol 169:112–121Google Scholar
  28. 28.
    Hu X, Shi Q, Zhang H et al (2017) Appl Catal A 297:17Google Scholar
  29. 29.
    Venezia AM, Carlo GD, Pantaleo G et al (2008) Appl Catal B 88(3–4):430Google Scholar
  30. 30.
    NIST X-ray Photoelectron Spectroscopy Database (2019). https://srdata.nist.gov/xps/Default.aspx. Accessed 12 April 2019
  31. 31.
    Fang D, Xie J, Hu H et al (2015) Chem Eng J 271:23CrossRefGoogle Scholar
  32. 32.
    Chen Z, Wang F, Li H et al (2011) Ind Eng Chem Res 51(1):202CrossRefGoogle Scholar
  33. 33.
    Kijlstra WS, Biervliet M, Poels EK et al (1998) Appl Catal B 16(4):327CrossRefGoogle Scholar
  34. 34.
    Zhu L, Zhong Z, Yang H et al (2017) Environ Technol 38(10):1285CrossRefGoogle Scholar
  35. 35.
    Jia B, Guo J, Luo H et al (2017) Appl Catal A 553:82CrossRefGoogle Scholar
  36. 36.
    Xie J, Fang D, He F et al (2012) Catal Commun 28(44):77–81CrossRefGoogle Scholar
  37. 37.
    Li P, Liu Q, Liu Z (2012) Chem Eng J 181:169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringNorth China University of Science and TechnologyTangshanChina
  2. 2.Coal Chemical Engineering Technology Research Center of Hebei ProvinceTangshanChina

Personalised recommendations