Advertisement

On-Filter Integration of Soot Oxidation and Selective Catalytic Reduction of NOx with NH3 by Selective Two Component Catalysts

  • Ferenc Martinovic
  • Tahrizi Andana
  • Fabio Alessandro DeorsolaEmail author
  • Samir Bensaid
  • Raffaele Pirone
Article
  • 1 Downloads

Abstract

A group of catalysts was developed with the purpose of enhancing the soot oxidation in the selective catalytic reduction on filter system, without negatively effecting the NOx conversion associated to NH3 oxidation. The impregnation with alkali metal of a series of supports, characterized by a lack of strong superficial acid sites, improved soot oxidation simultaneously preventing ammonia adsorption, thus its catalytic oxidation. Strong synergy was observed between a ZrO2–CeO2 support and potassium, decreasing the T50 of the soot conversion of 170 °C in loose contact. This catalyst was added to a Fe-ZSM5 selective catalytic reduction (SCR) catalyst without negative effect for the SCR activity. The complex interaction between the potassium-based soot oxidation catalyst and the SCR one was investigated. The soot–soot oxidation catalyst-SCR catalyst contact mode was found to be a key factor and the increased contact of the soot–soot oxidation catalyst is preferable. Such dual component catalyst system was demonstrated to be promising for simultaneous removal of NOx and soot on a single filter.

Graphic Abstract

Keywords

SCR on filter Soot oxidation SCR Fe-ZSM5 

Notes

Acknowledgements

This work was funded through a SINCHEM Grant. SINCHEM is a Joint Doctorate programme selected under the Erasmus Mundus Action 1 Programme (FPA 2013-0037).

Supplementary material

10562_2019_3012_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2023 kb)

References

  1. 1.
    Schejbal M, Stepanek J, Marek M, Koci P, Kubicek M (2010) Fuel 89:2365CrossRefGoogle Scholar
  2. 2.
    Tomić MD, Savin LD, Mićić RD, Simikić MD, Furman TF (2013) Therm Sci 17:263CrossRefGoogle Scholar
  3. 3.
    Shigapov A, Dubkov A, Ukropec R, Carberry B, Graham G, Chun W, McCabe R (2008) Kinet Catal 49:756CrossRefGoogle Scholar
  4. 4.
    Tang W, Youngren D, SantaMaria M, Kumar S (2013) SAE Int J Engines 6:862CrossRefGoogle Scholar
  5. 5.
    Watling TC, Ravenscroft MR, Avery G (2012) Catal Today 188:32CrossRefGoogle Scholar
  6. 6.
    Lapuerta M, Oliva F, Agudelo JR, Boehman AL (2012) Combust Flame 159:844CrossRefGoogle Scholar
  7. 7.
    Karamitros D, Koltsakis G (2017) Chem Eng Sci 173:514CrossRefGoogle Scholar
  8. 8.
    Rappé KG (2014) Ind Eng Chem Res 53:17547CrossRefGoogle Scholar
  9. 9.
    Neyertz CA, Miró EE, Querini CA (2012) Chem Eng J 181–182:93CrossRefGoogle Scholar
  10. 10.
    Weng D, Li J, Wu X, Si Z (2011) J Environ Sci 23:145CrossRefGoogle Scholar
  11. 11.
    Kumar PA, Tanwar MD, Bensaid S, Russo N, Fino D (2012) Chem Eng J 207–208:258CrossRefGoogle Scholar
  12. 12.
    Corro G, Flores A, Pacheco-Aguirre F, Pal U, Bañuelos F, Ramirez A, Zehe A (2019) Fuel 250:17CrossRefGoogle Scholar
  13. 13.
    Metkar PS, Harold MP, Balakotaiah V (2012) Appl Catal B Environ 111:67CrossRefGoogle Scholar
  14. 14.
    Wittka T, Holderbaum B, Dittmann P, Pischinger S (2015) Emiss Control Sci Technol 1:167CrossRefGoogle Scholar
  15. 15.
    Myung CL, Jang W, Kwon S, Ko J, Jin D, Park S (2017) Energy 132:356CrossRefGoogle Scholar
  16. 16.
    Bensaid S, Balakotaiah V, Luss D (2017) AIChE J 63:238CrossRefGoogle Scholar
  17. 17.
    Mihai O, Tamm S, Stenfeldt M, Olsson L (2016) Philos Trans R Soc A 374: 20150086Google Scholar
  18. 18.
    Marchitti F, Nova I, Tronconi E (2016) Catal Today 267:110CrossRefGoogle Scholar
  19. 19.
    Czerwinski J, Zimmerli Y, Mayer A, D’Urbano G, Zürcher D (2015) Emiss Control Sci Technol 1:152CrossRefGoogle Scholar
  20. 20.
    Park SY, Narayanaswamy K, Schmieg SJ, Rutland CJ (2012) Ind Eng Chem Res 51:15582CrossRefGoogle Scholar
  21. 21.
    Wolff T, Deinlein R, Christensen H, Larsen L (2014) SAE Int J Mater Manuf 7:671CrossRefGoogle Scholar
  22. 22.
    Shimokawa H, Kurihara Y, Kusaba H, Einaga H, Teraoka Y (2012) Catal Today 185:99CrossRefGoogle Scholar
  23. 23.
    Davies C, Thompson K, Cooper A, Golunski S, Taylor SH, Bogarra Macias M, Doustdar O, Tsolakis A (2018) Appl Catal B 239:10CrossRefGoogle Scholar
  24. 24.
    Jiménez R, García X, Cellier C, Ruiz P, Gordon AL (2006) Appl Catal A 297:125CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Su Q, Li Q, Wang Z, Gao X, Zhang Z (2011) Chem Eng Technol 34:1864CrossRefGoogle Scholar
  26. 26.
    Ogura M, Kimura R, Ushiyama H, Nikaido F, Yamashita K, Okubo T (2014) ChemCatChem. 6:479CrossRefGoogle Scholar
  27. 27.
    Li Q, Wang X, Xin Y, Zhang Z, Zhang Y, Hao C, Meng M, Zheng L, Zheng L (2014) Sci Rep 4:4725PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Yang Z, Hu W, Zhang N, Li Y, Liao Y (2019) J Catal 337:98CrossRefGoogle Scholar
  29. 29.
    Aneggi E, Divins N, Leitenburg C, Llorca J, Trovarelli A (2014) J Catal 312:191CrossRefGoogle Scholar
  30. 30.
    Mizutani K, Takizawa K, Shimokawa H, Suzawa T, Ohyama N (2013) Top Catal 56:473CrossRefGoogle Scholar
  31. 31.
    Bisaiji Y, Yoshida K, Inoue M, Umemoto K, Fukuma T (2011) SAE Int J Fuels Lubr 5:380CrossRefGoogle Scholar
  32. 32.
    Hou N, Zhang Y, Meng M (2013) J Phys Chem C 117:4089CrossRefGoogle Scholar
  33. 33.
    Wang Q, Sohn JH, Park SY, Choi JS, Lee JY, Chung JS (2010) J Ind Eng Chem 16:68CrossRefGoogle Scholar
  34. 34.
    Peng Y, Li J, Huang X, Li X, Su W, Sun X, Wang D, Hao J (2014) Environ Sci Technol 48:4515PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sánchez BS, Querini CA, Miró EE (2011) Appl Catal A 392:158CrossRefGoogle Scholar
  36. 36.
    Matarrese R, Aneggi E, Castoldi L, Llorca J, Trovarelli A, Lietti L (2016) Catal Today 267:119CrossRefGoogle Scholar
  37. 37.
    Castoldi L, Artioli N, Matarrese R, Lietti L, Forzatti P (2010) Catal Today 157:384CrossRefGoogle Scholar
  38. 38.
    Sinhamahapatra A, Jeon JP, Kang J, Han B, Yu JS (2016) Sci Rep 6:27218PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Guillén-Hurtado N, García-García A, Bueno-López A (2013) J Catal 299:181CrossRefGoogle Scholar
  40. 40.
    Castoldi L, Matarrese R, Lietti L, Forzatti P (2006) Appl Catal B 64:25CrossRefGoogle Scholar
  41. 41.
    Peralta MA, Zanuttini MS, Ulla MA, Querini CA (2011) Appl Catal A 399:161CrossRefGoogle Scholar
  42. 42.
    Iwasaki M, Shinjoh H (2010) Appl Catal A 390:71CrossRefGoogle Scholar
  43. 43.
    Metkar PS, Harold MP, Balakotaiah V (2013) Chem Eng Sci 87:51CrossRefGoogle Scholar
  44. 44.
    Kamasamudram K, Currier N, Szailer T, Yezerets A (2010) SAE Int J Fuels Lubr 3:664CrossRefGoogle Scholar
  45. 45.
    Kamatani K, Higuchi K, Yamamoto Y, Arai S, Tanaka N, Ogura M (2015) Sci Rep 5:10161PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Selleri T, Gramigni F, Nova I, Tronconi E, Dieterich S, Weibel M, Schmeisser V (2018) Catal Sci Technol 8:2467CrossRefGoogle Scholar
  47. 47.
    Fino D, Bensaid S, Piumetti M, Russo N (2016) Appl Catal A 509:75CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ferenc Martinovic
    • 1
  • Tahrizi Andana
    • 1
  • Fabio Alessandro Deorsola
    • 1
    Email author
  • Samir Bensaid
    • 1
  • Raffaele Pirone
    • 1
  1. 1.Department of Science Applied and TechnologyPolitecnico di TorinoTurinItaly

Personalised recommendations