Advertisement

Morphology Controlled CuO Nanostructures for Efficient Catalytic Reduction of 4-Nitrophenol

  • Kavita Sahu
  • Rahul Singhal
  • Satyabrata MohapatraEmail author
Article
  • 14 Downloads

Abstract

Catalytic transformation of nitroaromatic compounds in wastewater using nanostructured catalysts is a promising method for wastewater treatment. Here, we report a systematic study on morphology-dependent catalytic activity of CuO nanostructures for efficient reduction of 4-nitrophenol (4-NP) in water. The morphology of CuO nanostructures was controllably varied from nanorods, nanosheets and hierarchical 3D flower-like structures by simply varying ammonia concentration in a simple wet chemical approach. Catalytic transformation of toxic 4-NP into useful 4-aminophenol by the prepared nanostructured CuO samples were investigated. The impact of morphology on the catalytic activity of nanostructured CuO catalysts was examined. It was observed that hierarchical 3D flower-like CuO catalysts show enhanced catalytic activity as compared to nanorods and nanosheets. The origin of this morphology-dependent catalytic activity of CuO nanostructures is discussed.

Graphic Abstract

Keywords

CuO Flowers Nanosheets Nanorods Catalyst 4-Nitrophenol 

Notes

Acknowledgement

KS is obliged to the DST (Department of Science and Technology), New Delhi for funding in the form of DST-WOS-A project (SR/WOS-A/PM-10/2017(G&C)). The authors are thankful to Prof. Shyamal Kumar Saha (IACS, Kolkata) for extending the PL facility and Tapas for his help in PL measurements and acknowledge support from Centre for Research in Nanoscience and Nanotechnology, University of Calcutta for FESEM studies, Guru Gobind Singh Indraprastha University for funding under FRGS project (GGSIPU/DRC/Ph.D./Adm./2016/1563) and DST for providing UV–Vis–NIR and Raman facilities under FIST grant (SR/FST/PSI-167/2011(C)).

References

  1. 1.
    Xu H, Zhu G, Zheng D, Xi C, Xu X, Shen X (2012) J Colloid Interface Sci 383:75PubMedCrossRefGoogle Scholar
  2. 2.
    Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) ACS Appl Mater Inter 6:2174CrossRefGoogle Scholar
  3. 3.
    Avasthi DK, Mishra YK, Singhal R, Kabiraj D, Mohapatra S, Mohanta B, Gohil NK, Singh N (2010) J Nanosci Nanotechnol 10:2705PubMedCrossRefGoogle Scholar
  4. 4.
    Kuriakose S, Bhardwaj N, Singh J, Satpati B (2013) Mohapatra. Beilstein J Nanotechnol 4:763PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sahu K, Singh J, Satpati B, Mohapatra S (2018) J Phys Chem Solids 121:186CrossRefGoogle Scholar
  6. 6.
    Singh J, Satpati B, Mohapatra S (2017) Plasmonics 12:877CrossRefGoogle Scholar
  7. 7.
    Kuriakose S, Sahu K, Khan SA, Tripathi A, Avasthi DK, Mohapatra S (2017) Opt Mater 64:47CrossRefGoogle Scholar
  8. 8.
    Kuriakose S, Satpati B, Mohapatra S (2015) Adv Mater Lett 6:217CrossRefGoogle Scholar
  9. 9.
    Sahu K, Satpati B, Mohapatra S (2019) Catal Lett 149:2519CrossRefGoogle Scholar
  10. 10.
    Zhang W, Xiao X, An T, Song Z, Fu J, Sheng G, Cui M (2003) J Chem Technol Biotechnol 78:788CrossRefGoogle Scholar
  11. 11.
    Sahu K, Singh J, Mohapatra S (2019) Opt Mater 93:58CrossRefGoogle Scholar
  12. 12.
    Zhao B, Mele G, Pio I, Li J, Palmisano L, Vasapollo G (2010) J Hazard Mater 176:569PubMedCrossRefGoogle Scholar
  13. 13.
    Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237PubMedCrossRefGoogle Scholar
  14. 14.
    Hayakawa K, Yoshimura T, Esumi K (2003) Langmuir 19:5517CrossRefGoogle Scholar
  15. 15.
    Saha S, Pal A, Kundu S, Basu S, Pal T (2009) Langmuir 26:2885CrossRefGoogle Scholar
  16. 16.
    Kästner C, Thünemann AF (2016) Langmuir 32:7383PubMedCrossRefGoogle Scholar
  17. 17.
    Zhou Z, Lu C, Wu X, Zhang X (2013) RSC Adv 3:26066CrossRefGoogle Scholar
  18. 18.
    Ghosh SK, Mandal M, Kundu S, Nath S, Pal T (2004) Appl Catal A 268:61CrossRefGoogle Scholar
  19. 19.
    Alif A, Boule P (1991) J Photochem Photobio A 59:357CrossRefGoogle Scholar
  20. 20.
    Shi F, Zhang Q, Ma Y, He Y, Deng Y (2005) J Am Chem Soc 127:4182PubMedCrossRefGoogle Scholar
  21. 21.
    Mandlimath TR, Gopal B (2011) J Mol Catal A 350:9CrossRefGoogle Scholar
  22. 22.
    Aditya T, Jana J, Singh NK, Pal A, Pal T (2017) ACS Omega 2:1968PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Nemanashi M, Meijboom R (2013) J Colloid Interface Sci 389:260PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sharmila G, Thirumarimurugan M, Sivakumar VM (2016) Optik 127:7822CrossRefGoogle Scholar
  25. 25.
    Konar S, Kalita H, Puvvada N, Tantubay S, Mahto MK, Biswas S, Pathak A (2016) J Catal 336:11CrossRefGoogle Scholar
  26. 26.
    Bouazizi N, Vieillard J, Thebault P, Desriac F, Clamens T, Bargougui R, Couvrat N, Thoumire O, Brun N, Ladam G, Morin S (2018) Dalton Trans 47:9143PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Vieillard J, Bouazizi N, Mohammad NM, Thomas C, Florie D, Radhouane B, Thébault P, Lesouhaitier O, Le Derf F, Azzouz A (2019) Indus Eng Chem Res 58:10179CrossRefGoogle Scholar
  28. 28.
    Qamar MT, Aslam M, Ismail IM, Salah N, Hameed A (2015) ACS Appl Mater Inter 7:8757CrossRefGoogle Scholar
  29. 29.
    Bandara J, Kiwi J, Pulgarin C, Pajonk G (1996) J Mol Catal A 111:333CrossRefGoogle Scholar
  30. 30.
    Xu L, Xu HY, Wang F, Zhang FJ, Meng ZD, Zhao W, Oh WC (2012) J Korean Ceram Soc 49:151CrossRefGoogle Scholar
  31. 31.
    Chen L, Shet S, Tang H, Wang H, Deutsch T, Yan Y, Turner J, Al-Jassim M (2010) J Mater Chem 20:6962CrossRefGoogle Scholar
  32. 32.
    Lin XZ, Liu P, Yu JM, Yang GW (2009) J Phys Chem C 113:17543CrossRefGoogle Scholar
  33. 33.
    Prathap MA, Kaur B, Srivastava R (2012) J Colloid Interface Sci 370:144PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Al-Gaashani R, Radiman S, Tabet N, Daud AR (2011) J Alloys Compd 509:8761CrossRefGoogle Scholar
  35. 35.
    Samarasekara P, Kumara NT, Yapa NU (2006) J Phys Cond Matt 18:2417CrossRefGoogle Scholar
  36. 36.
    Yang Z, Xu J, Zhang W, Liu A, Tang S (2007) J Solid State Chem 180:1390CrossRefGoogle Scholar
  37. 37.
    Felix S, Chakkravarthy RB, Grace AN (2015) Mater Sci Eng 73:012115Google Scholar
  38. 38.
    Volanti DP, Keyson D, Cavalcante LS, Simões AZ, Joya MR, Longo E, Varela JA, Pizani PS, Souza AG (2008) J Alloys Compd 459:537CrossRefGoogle Scholar
  39. 39.
    Huang LS, Yang SG, Li T, Gu BX, Du YW, Lu YN, Shi SZ (2004) J Crystal Growth 260:130CrossRefGoogle Scholar
  40. 40.
    Ethiraj AS, Kang DJ (2012) Nanoscale Res Lett 7:70PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wang Z, Xu C, Gao G, Li X (2014) RSC Adv 4:13644CrossRefGoogle Scholar
  42. 42.
    Bhattacharjee A, Ahmaruzzaman M (2016) RSC Adv 6:41348CrossRefGoogle Scholar
  43. 43.
    Che W, Ni Y, Zhang Y, Ma Y (2015) J Phys Chem Solids 77:1CrossRefGoogle Scholar
  44. 44.
    Wang Z, Pischedda V, Saxena SK, Lazor P (2002) Solid State Commun 121:275CrossRefGoogle Scholar
  45. 45.
    Chand P, Gaur A, Kumar A (2013) Superlatt Microstruct 60:129CrossRefGoogle Scholar
  46. 46.
    Sahu K, Satpati B, Singhal R, Mohapatra S (2019) J Phys Chem Solids 8:109143Google Scholar
  47. 47.
    Mageshwari K, Sathyamoorthy R (2013) Appl Nanosci 3:161CrossRefGoogle Scholar
  48. 48.
    Singh DP, Ojha AK, Srivastava ON (2009) J Phys Chem C 113:3409CrossRefGoogle Scholar
  49. 49.
    Zuo Y, Song JM, Niu HL, Mao CJ, Zhang SY, Shen YH (2016) Nanotechnology 27:145701PubMedCrossRefGoogle Scholar
  50. 50.
    Vellaichamy B, Periakaruppan P (2016) RSC Adv 6:88837CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kavita Sahu
    • 1
  • Rahul Singhal
    • 2
  • Satyabrata Mohapatra
    • 1
    Email author
  1. 1.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityNew DelhiIndia
  2. 2.Department of PhysicsMalaviya National Institute of TechnologyJaipurIndia

Personalised recommendations