Advertisement

Enhancing the Sonolysis Efficiency of SrTiO3 Particles with Cr-Doping

  • Liuyang Zhu
  • Wen Gu
  • Wei Zou
  • Huan Liu
  • Yingying Zhang
  • Qingmei Wu
  • Zhengping FuEmail author
  • Yalin LuEmail author
Article
  • 18 Downloads

Abstract

Sonolysis could be more practical for water treatment than traditional catalytic methods in some specific situations. However, the practical application is limited by the low degradation rate. In this work, the Cr doped SrTiO3 was prepared by hydrothermal method, and the Cr-doping results in the decreased crystal symmetry, which leads to the rough surface and a large number of pores of the sample. The appearance of a large number of holes increases the specific surface area and enhances the gas adsorption performance of the sample, which can promote the cavitation. The optimized Cr-doped SrTiO3 can degrade 95.4% rhodamine B (5 mg/L) in 10 min under ultrasound irradiation (53 kHz, 350 W). Furthermore, the improvement of sonolysis degradation with the Cr doped SrTiO3 is universal for dyes, such as methyl blue (MB), methyl orange (MO) and rhodamine B (RhB). The role of active species in ultrasonic catalysis and the synergistic mechanism of ultrasound and catalyst were systematically studied by adding sacrificial agents and changing the reaction atmosphere. This work indicates that the incorporation of finely modified inorganic particles is effective for efficient water treatment.

Graphic Abstract

Keywords

Sonolysis Cr doped SrTiO3 Sonocatalyst Cavitation Active species 

Notes

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation (1908085ME119),the National Key Research and Development Program of China (2016YFA0401004, 2017YFA0402904), Anhui Initiative in Quantum Information Technologies (AHY100000), the National Natural Science Foundation of China (51627901) and the Open Programs for the Key Science & Technology Infrastructures of Chinese Academy of Sciences.

Supplementary material

10562_2019_3008_MOESM1_ESM.docx (601 kb)
Supplementary material 1 (DOCX 601 kb)

References

  1. 1.
    Wang Y, Cheng R, Wen Z, Zhao L (2012) Chem Eng J 203:277–284CrossRefGoogle Scholar
  2. 2.
    Glaze WH, Kang JW, Chapin DH (1987) Ozone Sci Eng 9:335–352CrossRefGoogle Scholar
  3. 3.
    O’Shea KE, Dionysiou DD (2012) J Phys Chem Lett 3:2112–2113CrossRefGoogle Scholar
  4. 4.
    Gültekin I, Ince NH (2007) J Environ Manag 85:816–832CrossRefGoogle Scholar
  5. 5.
    Suslick KS (1990) Science 247:1439–1445CrossRefGoogle Scholar
  6. 6.
    Chen X, Dai J, Shi G, Li L, Wang G, Yang H (2016) Ultrason Sonochem 29:172–177CrossRefGoogle Scholar
  7. 7.
    Lee G, Ibrahim S, Kittappa S, Park H, Park CM (2018) Ultrason Sonochem 44:64–72CrossRefGoogle Scholar
  8. 8.
    Qiu P, Li W, Kang K, Park B, Luo W, Zhao D, Khim J (2014) J Mater Chem A 2:16452–16458CrossRefGoogle Scholar
  9. 9.
    Suslick KS, Doktycz SJ, Flint EB (1990) Ultrasonics 28:280–290CrossRefGoogle Scholar
  10. 10.
    Ashokkumar M, Grieser F (2005) J Am Chem Soc 127:5326–5327CrossRefGoogle Scholar
  11. 11.
    Shchukin DG, Skorb E, Belova V, Möhwald H (2011) Adv Mater 23:1922–1934CrossRefGoogle Scholar
  12. 12.
    Roldugin V, Tikhonov N (2002) Doklady Phys Chem 383:84–87CrossRefGoogle Scholar
  13. 13.
    Hong K-S, Xu H, Konishi H, Li X (2010) J Phys Chem Lett 1:997–1002CrossRefGoogle Scholar
  14. 14.
    Tu S, Huang H, Zhang T, Zhang Y (2017) Appl Catal B 219:550–562CrossRefGoogle Scholar
  15. 15.
    Ouyang S, Tong H, Umezawa N, Cao J, Li P, Bi Y, Zhang Y, Ye J (2012) J Am Chem Soc 134:1974–1977CrossRefGoogle Scholar
  16. 16.
    Hu Y, Tan OK, Pan JS, Yao X (2004) J Phys Chem B 108:11214–11218CrossRefGoogle Scholar
  17. 17.
    Salvador P, Gutiérrez C (1984) J Electroanal Chem Interfacial Electrochem 160:117–130CrossRefGoogle Scholar
  18. 18.
    Wang L, Zhou Y, Timoshenko J, Liu S, Qiao Q, Kisslinger K, Cuiffo M, Chuang Y-C, Zuo X, Xue Y, Guo Y, Pan C, Li H, Nam C-Y, Bliznakov S, Liu P, Frenkel AI, Zhu Y, Rafailovich MH (2019) ACS Catal 9:1446–1456CrossRefGoogle Scholar
  19. 19.
    Shirai S, Sato S, Suzuki TM, Jinnouchi R, Ohba N, Asahi R, Morikawa T (2018) J Phys Chem C 122:1921–1929CrossRefGoogle Scholar
  20. 20.
    Zhang H, Qiao J, Li G, Li S, Wang G, Wang J, Song Y (2018) Ultrason Sonochem 42:356–367CrossRefGoogle Scholar
  21. 21.
    Zhou M, Yang H, Xian T, Li RS, Zhang HM, Wang XX (2015) J Hazard Mater 289:149–157CrossRefGoogle Scholar
  22. 22.
    Zhu L, Ghosh T, Park C-Y, Meng Z-D, Oh W-C (2012) Chin J Catal 33:1276–1283CrossRefGoogle Scholar
  23. 23.
    Wu Y, Song L, Zhang S, Wu X, Zhang S, Tian H, Ye J (2013) Catal Commun 37:14–18CrossRefGoogle Scholar
  24. 24.
    Farhadi S, Siadatnasab F, Khataee A (2017) Ultrason Sonochem 37:298–309CrossRefGoogle Scholar
  25. 25.
    Song L, Zhang S, Wu X, Wei Q (2012) Ultrason Sonochem 19:1169–1173CrossRefGoogle Scholar
  26. 26.
    Lv M, Xie Y, Wang Y, Sun X, Wu F, Chen H, Wang S, Shen C, Chen Z, Ni S, Liu G, Xu X (2015) Phys Chem Chem Phys 17:26320–26329CrossRefGoogle Scholar
  27. 27.
    Hui J, Zhang G, Ni C, Irvine JTS (2017) Chem Commun 53:10038–10041CrossRefGoogle Scholar
  28. 28.
    Lan S, Feng J, Xiong Y, Tian S, Liu S, Kong L (2017) Environ Sci Technol 51:6560–6569CrossRefGoogle Scholar
  29. 29.
    Wang Y, Chen L, Chen C, Xi J, Cao H, Duan X, Xie Y, Song W, Wang S (2019) Appl Catal B 254:283–291CrossRefGoogle Scholar
  30. 30.
    Darvishi Cheshmeh Soltani R, Jorfi S, Ramezani H, Purfadakari S (2016) Ultrason Sonochem 28:69–78CrossRefGoogle Scholar
  31. 31.
    Ghosh T, Ullah K, Nikam V, Park C-Y, Meng Z-D, Oh W-C (2013) Ultrason Sonochem 20:768–776CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Anhui Laboratory of Advanced Photon Science and TechnologyUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.Synergetic Innovation Center of Quantum Information and Quantum Physics & Hefei National Laboratory for Physical Sciences at MicroscaleUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations